初中数学第十七章 方差与频数分布综合与测试当堂达标检测题
展开京改版八年级数学下册第十七章方差与频数分布专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是( )
A.10 B.4 C.2 D.0.2
2、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )
A.0和2 B.0和 C.0和1 D.0和0
3、2020年6月1日《苏州市生活垃圾分类管理条例》正式实施.为了配合实施垃圾分类,让同学们了解垃圾分类的相关知识.八年级某班甲、乙、丙、丁四个小组的同学参加了年级“垃圾分类知识”预赛,四个小组的平均分相同,下面表格为四个小组的方差.若要从中选出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
方差 | 3.6 | 3.5 | 4 | 3.2 |
A.甲组 B.乙组 C.丙组 D.丁组
4、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )
A.众数 B.平均数 C.中位数 D.方差
5、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( )
A.32人 B.40人 C.48人 D.50人
6、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
7、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为( )
A. B. C. D.
8、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( ).
A.9 B.8 C.7 D.6
9、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是( )
A.跳绳次数不少于次的占
B.大多数学生跳绳次数在范围内
C.跳绳次数最多的是次
D.由样本可以估计全年级人中跳绳次数在次的大约有人
10、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、南京2021年11月1号的最高气温为22℃,最低气温为12℃,该日的气温极差为 __.
2、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊____只.
3、若一组数据,,,…,的方差为4.5,则另一组数据2,2,2,…,2的方差为____.
4、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为、,则身高较整齐的球队是________队(填“甲”或“乙”).
5、某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:
班级 | 参加人数 | 平均次数 | 中位数 | 方差 |
甲 | 45 | 135 | 149 | 180 |
乙 | 45 | 135 | 151 | 130 |
下列三个命题:
(1)甲班平均成绩低于乙班平均成绩;
(2)甲班成绩的波动比乙班成绩的波动大;
(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)
其中正确的命题是___________.(只填序号)
三、解答题(5小题,每小题10分,共计50分)
1、社会主义核心价值观是社会主义核心价值体系最核心的体现,践行社会主义核心价值观也是每一名中学生的责任.某校开展了社会主义核心价值观演讲比赛,学校在演讲比赛活动中,对全校学生用A、B、C、D四个等级进行评分,现从中随机抽取m名学生进行调查,绘制出了如下两幅不完整的统计图.
请你根据图中的信息回答下列问题:
(1) ;
(2)将图甲中的条形统计图补充完整;
(3)图乙中A等级所占圆心角的度数为 .
2、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:
甲、乙食堂的人数统计表:
食堂 | 甲 | 乙 |
平均数 | 211 | 196 |
中位数 | a | 215 |
众数 | b | 230 |
极差 | 188 | c |
甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300
乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260
请根据相关信息,回答以下问题:
(1)填空:a= ,b= ,c= ,并补全乙食堂的人数数据条形统计图:
(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);
(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?
3、 “西安年,最中国”.西安某校九年级1班数学兴趣小组就“最想去的西安市旅游景点”,随机调查了本校部分学生,A﹣临潼秦始皇帝陵博物馆(兵马俑),B﹣大唐芙蓉园,C﹣西安城墙、D﹣陕西历史博物馆,E﹣大雁塔.要求每位同学选择且只能选择一个最想去的景点.下面是根据调查结果进行数据整理后绘制出的不完整统计图,请根据图中信息,解答下列问题:
(1)补全条形统计图,则扇形统计图中表示最想去景点C的扇形圆心角的度数为____度;
(2)所抽取的部分学生的众数落在______组内;
(3)若该校共有1800名学生,请估计最想去景点D的学生人数.
4、为了庆祝新中国成立72周年,某校学生处在七年级和八年级开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析.(竞赛成绩用x表示,共分为四个等级:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100)
下面给出了部分信息:
七年级C等中全部学生的成绩为:86,87,83,89,84,89,86,89,89,85.
八年级D等中全部学生的成绩为:92,95,98,98,98,98,100,100,100,100.
七、八年级抽取的学生知识竞寨成绩统计表
| 平均数 | 中位数 | 众数 | 满分率 |
七年级 | 91 | b | c | |
八年级 | 91 | 87 | 97 |
七年级抛取的学生知识竞赛成绩扇形统计图
根据以上信息,解答下列问题:
(1)直接写出上述表中a,b,c,m的值;
(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);
(3)该校七年级的1800名学生和八年级的2500名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次知识竞赛中优秀的人数.
5、在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:
劳动时间(时) | 人数 | 占整体的百分比 |
0.5 | 12 | 12% |
1 | 30 | 30% |
1.5 | x | 40% |
2 | 18 | y |
合计 | m | 100% |
(1)统计表中的x= ,y= ;
(2)被调查同学劳动时间的中位数是 时;
(3)请将条形统计图补充完整;
(4)求所有被调查同学的平均劳动时间.
(5)若该校有1500名学生,试估计双休日在各自社区参加2小时义务劳动的学生有多少?
-参考答案-
一、单选题
1、C
【分析】
根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.
【详解】
﹣1,2,0,1,﹣2,这组数据的平均数为
故选C
【点睛】
本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键.
2、A
【分析】
根据平均数公式与方差公式计算即可.
【详解】
解:,
.
故选择A.
【点睛】
本题考查平均数与方差,掌握平均数与方差公式是解题关键.
3、D
【分析】
在平均分数相同的情况下,方差越小,波动越小,成绩越稳定,即可得出选项.
【详解】
解:由图标可得:,
∵四个小组的平均分相同,
∴若要从中选出一个实力更平均的小组代表年级参加学校决赛,应选择丁组,
故选:D.
【点睛】
题目主要考查了方差,理解方差反映数据的波动程度,当平均数相同时,方差越大,波动性越大是解题关键.
4、A
【分析】
依据平均数、中位数、众数、方差的定义即可得到结论.
【详解】
解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;
B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;
C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;
D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;
故选:A.
【点睛】
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.
5、D
【分析】
根据频率=频数总数,求解即可.
【详解】
解:根据频率=频数总数,即总数=频数频率,
则参加比赛的同学共有40÷0.8=50(人),
故选:D.
【点睛】
本题考查了频数与频率,记住公式:频率=频数总数是解题的关键.
6、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
7、A
【分析】
首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.
【详解】
解:∵打捞a条鱼,发现其中带标记的鱼有b条,
∴有标记的鱼占,
∵共有n条鱼做上标记,
∴鱼塘中估计有n÷=(条).
故选:A.
【点睛】
此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.
8、B
【分析】
根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.
【详解】
解:由题意得:第四组的频数=40-(2+7+11+12)=8;
故选B.
【点睛】
本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.
9、A
【分析】
根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得.
【详解】
A、跳绳次数不少于次的占,选项说法正确,符合题意;
B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;
C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;
D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.
10、D
【分析】
根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.
【详解】
解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.
【点睛】
本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.
二、填空题
1、10℃
【分析】
用最高温度减去最低温度即可.
【详解】
解:该日的气温极差为22﹣12=10(℃).
故答案为:10℃.
【点睛】
本题考查了有理数减法,解题的关键是了解有理数减法法则在生活中运用方法,难度不大.
2、400
【分析】
设这个地区有黄羊x只,根据第二次捕捉40只绵羊,其中有2只有记号,即可列方程求解.
【详解】
设这个地区有黄羊x只,由题意得
解得
则估计这个地区有黄羊400只.
故答案为:400
【点睛】
本题考查的是用样本估计总体,解答本题的关键是读懂题意,得到第二次捕捉的绵羊中有记号的占全部有记号的比例.
3、18
【分析】
根据方差的计算公式计算即可.
【详解】
设,,,…,的平均数为,则2,2,2,…,2的平均数为2,
∵数据,,,…,的方差为4.5,
∴=,
∴
=
=
=18,
故答案为:18.
【点睛】
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
4、甲
【分析】
根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
解:∵S2甲<S2乙
∴身高较整齐的球队是甲队.
故答案为:甲.
【点睛】
本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5、(2)(3)
【分析】
平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.
【详解】
解:两个班的平均成绩均为135次,故(1)错误;
方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;
中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.
综上可得三个说法中只有(2)(3)正确.
故答案为:(2)(3).
【点睛】
本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
三、解答题
1、(1)50;(2)见详解;(3)108°.
【分析】
(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;
(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,即可把条形统计图补充完整;
(3)用360°乘以A等级所占的百分比即可得到A等级所占圆心角的度数;
【详解】
解:(1)10÷20%=50,
∴,
所以抽取了50个学生进行调查;
故答案为:50;
(2)B等级的人数=5015105=20(人),
补全统计图如下:
(3)图乙中A等级所占圆心角的度数=360°×=108°;
故答案为:108°.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.
2、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.
【分析】
(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;
(2)从平均数的角度比较得出结论;
(3)用样本估算总体即可.
【详解】
解:(1)甲食堂20天的所有人数中位数是第10、11个数据,
∴a=224,
177人的有3天,天数最多,∴b=177,
乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,
∴c=290-120=170;
∵20-3-7-4=6,
∴补全乙食堂的人数数据条形统计图如图:
故答案为:224,177,170;
(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;
(3)1600×=844(名),
故北关中学甲食堂每天中午大约准备844名同学的午餐.
【点睛】
本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.
3、(1)图见解析,36;(2);(3)估计最想去景点的学生人数为360人.
【分析】
(1)先根据景点的条形统计图和扇形统计图信息求出调查的学生总人数,从而可得最想去景点的学生人数,由此补全条形统计图即可;再利用乘以最想去景点的学生所占百分比即可得其圆心角的度数;
(2)根据众数的定义(一组数据中出现次数最多的那个数据)求出所抽取的部分学生的众数,由此即可得出答案;
(3)利用1800乘以最想去景点的学生所占百分比即可得.
【详解】
解:(1)调查的学生总人数为(人),
则最想去景点的学生人数为(人),
补全条形统计图如下:
,
即扇形统计图中表示最想去景点的扇形圆心角的度数为36度,
故答案为:36;
(2)因为最想去景点的学生人数最多,
所以所抽取的部分学生的众数落在组内,
故答案为:;
(3)(人),
答:估计最想去景点的学生人数为360人.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联、众数等知识点,熟练掌握统计调查的相关知识是解题关键.
4、(1)a=10%;b=89;c=100;m=10;(2)七年级的成绩更好,见解析;(3)估计两个年级此次知识竞赛中优秀的人数为1435人.
【分析】
(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;
(2)答案不唯一,合理均可;
(3)总人数乘以90分(包含90分)以上人数所占比例即可.
【详解】
解:(1)七年级C等有10人,故C等所占比例为×100%=25%,所以a=1-20%-45%-25%=10%;
七年级A等有:40×10%=4(人),B等有:40×20%=8(人),
把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的数是89,89,所以中位数b=89;
因为七年级满分人数为:40×25%=10(人),所以众数c=100;
八年级满分率为:×100%=10%,故m=10;
(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;
(3)1800×45%+2500××100%=1435(人),
估计两个年级此次知识竞赛中优秀的人数为1435人.
【点睛】
本题考查频数分布直方图,扇形统计图,掌握两个统计图中数量之间的关系是正确解答的关键.
5、(1)40,18%;(2)1.5;(3)见解析;(4)1.32小时;(5)270人
【分析】
(1)根据频率=,计算即可解决问题;
(2)根据中位数的定义进行解答;
(3)根据(1)求出的x的值,即可补全统计图;
(4)根据平均数的定义计算即可;
(5)用该校的总人数乘以双休日在各自社区参加2小时义务劳动的学生所占的百分比即可.
【详解】
解:(1)被调查的同学的总人数为(人),
∴,,
故答案为:40,0.18;
(2)把这些数从小到大排列,中位数是第50、51个数的平均数,
则中位数是(小时);
故答案为:1.5;
(3)根据(1)补全统计图如下:
(4)所有被调查同学的平均劳动时间是:(小时);
(5)根据题意得:(人),
答:估计双休日在各自社区参加2小时义务劳动的学生有270人.
【点睛】
本题主要考查了条形统计图,平均数、中位数,用样本估计总体,根据统计图找出有用信息是解答此题的关键.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
数学第十七章 方差与频数分布综合与测试巩固练习: 这是一份数学第十七章 方差与频数分布综合与测试巩固练习,共23页。
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共19页。试卷主要包含了在频数分布表中,所有频数之和等内容,欢迎下载使用。