![精品试卷京改版八年级数学下册第十七章方差与频数分布专题测试试题01](http://img-preview.51jiaoxi.com/2/3/12703491/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷京改版八年级数学下册第十七章方差与频数分布专题测试试题02](http://img-preview.51jiaoxi.com/2/3/12703491/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷京改版八年级数学下册第十七章方差与频数分布专题测试试题03](http://img-preview.51jiaoxi.com/2/3/12703491/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题
展开京改版八年级数学下册第十七章方差与频数分布专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )
A.众数 B.中位数 C.平均数 D.方差
2、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是( )
A.调查方式是普查 B.该校只是个家长持反对态度
C.样本是个家长 D.该校约有的家长持反对态度
3、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( ).
A.9 B.8 C.7 D.6
4、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
质量(千克) | 44 | 51 | 57 | 47 | 48 | 50 | 49 | 53 | 49 | 52 |
A.500千克,7500元 B.490千克,7350元
C.5000千克,75000元 D.4850千克,72750元
5、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )
A.3和2 B.4和3 C.5和2 D.6 和2
6、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )
A.样本中位数是200元
B.样本容量是20
C.该企业员工捐款金额的极差是450元
D.该企业员工最大捐款金额是500元
7、在对一组样本数据进行分析时,小华列出了方差的计算公式S2=,下列说法错误的是( )
A.样本容量是5 B.样本的中位数是4
C.样本的平均数是3.8 D.样本的众数是4
8、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
9、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )
A.平均数是80 B.众数是60 C.中位数是100 D.方差是20
10、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、________和________都能够反映每个对象出现的频繁程度;________表示每个对象出现的次数与总次数的比值.
2、七年级(5)班20名女生的身高如下(单位:cm):
153 156 152 158 156 160 163 145 152 153
162 153 165 150 157 153 158 157 158 158
(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 |
|
|
|
百分比 |
|
|
|
(2)上表把身高分成___组,组距是___;
(3)身高在___范围的人数最多.
3、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:
尺码/ | 22 | 22.5 | 23 | 23.5 | 24 | 24.5 | 25 |
销售量/双 | 1 | 2 | 5 | 12 | 6 | 3 | 1 |
如果鞋店要购进90双这种女鞋,那么购进,和三种尺码女鞋数量最合适的分别是__________.
4、已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是5,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差的和为_______.
5、在数3141592653中,偶数出现的频率是______.
三、解答题(5小题,每小题10分,共计50分)
1、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:
废旧电池数/节 | 3 | 4 | 5 | 6 | 8 |
人数/人 | 10 | 15 | 12 | 7 | 6 |
(1)这50名学生平均每人收集废旧电池多少节?
(2)这组废旧电池节数的中位数,众数分别是多少?
(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?
2、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.
(1)请指出条形统计图中存在的错误,并说明理由;
(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.
(3)请计算D类学生在扇形统计图中的圆心角.
3、为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.
载客量/人 | 组中值 | 频数(班次) |
1≤x<21 | 11 | 2 |
21≤x<41 | a | 8 |
41≤x<61 | b | 20 |
(1)求出表格中a=_______,b=______.
(2)计算该2路公共汽车平均每班的载客量是多少?
4、某校学生会为了解该校2860名学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:
(1)在这次研究中,一共调查了 名学生.
(2)喜欢排球的人数在扇形统计图中所占的圆心角是 度.
(3)补全频数分布折线统计图.
(4)估计该校喜欢排球的学生有多少人?
5、为了遏制新型冠状病毒疫情的蔓延势头,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.
(1)本次调查的人数有多少人?
(2)请补全条形图,并求出“在线答疑”在扇形图中的圆心角度数;
(3)若全校学生共有2000人,请你估计该校学生对“在线阅读”感兴趣共有多少人?
-参考答案-
一、单选题
1、D
【分析】
根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解
【详解】
解:由题意得:
原中位数为3,原众数为3,原平均数为3,原方差为1.8;
去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;
∴统计量发生变化的是方差;
故选D
【点睛】
本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.
2、D
【分析】
根据抽查与普查的定义以及用样本估计总体解答即可.
【详解】
解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;
.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;
.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;
.该校约有的家长持反对态度,本项正确,符合题意,
故选:D.
【点睛】
本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.
3、B
【分析】
根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.
【详解】
解:由题意得:第四组的频数=40-(2+7+11+12)=8;
故选B.
【点睛】
本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.
4、C
【分析】
先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.
【详解】
解:选出的10棵油桃树的平均产量为:
=50(千克),
估计100棵油桃树的总产量为:50×100=5000(千克),
按批发价的总收入为:15×5000=75000(元).
故选C.
【点睛】
本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.
5、D
【分析】
先根据平均数定义求出x,再根据方差公式计算即可求解.
【详解】
解:由题意得,
解得x=6,
∴这组数据的方差是.
故选:D
【点睛】
本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.
6、A
【详解】
解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;
B、共20人,样本容量为20,故选项B正确;
C、极差为500﹣50=450元,故选项C正确;
D、该企业员工最大捐款金额是500元,故选项D正确.
故选:A .
【点睛】
本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.
7、D
【分析】
先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.
【详解】
解:
由方差的计算公式得:这组样本数据为,
则样本的容量是5,选项A正确;
样本的中位数是4,选项B正确;
样本的平均数是,选项C正确;
样本的众数是3和4,选项D错误;
故选:D.
【点睛】
题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.
8、B
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
9、A
【分析】
根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.
【详解】
将这组数据从小到大重新排列为:60、60、70、90、90、90、100,
所以这组数据的众数是90、中位数是90、
平均数为、
方差为.
观察只有选项A正确,
故选:A.
【点睛】
本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.
10、B
【分析】
根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.
【详解】
众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.
故选:B
【点睛】
本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.
二、填空题
1、频率 频数 频率
【分析】
根据频率与频数的意义以及频率的计算方法填空即可.
【详解】
频率和频数都能够反映每个对象出现的频繁程度;频率表示每个对象出现的次数与总次数的比值.
故答案为:频率;频数;频率
【点睛】
本题考查了频率与频数的意义以及频率的计算方法,理解频率与频数的意义是解题的关键.
2、3
10 150~160
【分析】
(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;
(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;
(3)根据所填信息确定身高在哪个范围的人数最多即可.
【详解】
(1)填表:
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 | 1 | 15 | 4 |
百分比 | 5% | 75% | 20% |
(2)上表把身高分成3组,组距是10;
(3)身高在范围最多.
【点睛】
本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.
3、3,18,9
【分析】
分别求得这三种鞋销售数量的占比,然后×90即可算出.
【详解】
解:根据题意可得:销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量各为1、6、3;则要购进90双这种女鞋,购进这三种女鞋数量各应是:
(双)、(双)、(双),
故填:3,18,9.
【点睛】
考查了综合运用统计知识解决问题的能力,属于基础题型.
4、49
【分析】
根据平均数及方差知识,直接计算即可.
【详解】
∵数据,,,,的平均数是2,
,即,
,,,,的平均数为:
,
∵数据,,,,的方差是5,
,
即,,
,,,,的方差为:
,
,
,
,
,
平均数和方差的和为,
故答案为:49.
【点睛】
本题是对平均数及方差知识的考查,熟练掌握平均数及方差计算是解决本题的关键.
5、30%
【分析】
在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.
【详解】
由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:
故答案为:30%
【点睛】
本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.
三、解答题
1、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.
【分析】
(1)求出50名学生收集废旧电池的总数,再求平均数即可;
(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;
(3)先求出这些电池可污染的水的数量即可解决问题.
【详解】
解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);
(2)从统计表格得,众数为4节;
由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);
(3)样本中电池总数4.8×50=240,
由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,
故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:
,,,,即,,,,
由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,
故在50名学生收集的废电池可少受污染水的吨数为
=320000(吨)
320000÷50×500=3200000吨,
答:本次活动可减少受浸染的水3200000吨.
【点睛】
本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.
2、(1)C项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B类;(3)D类学生在扇形统计图中的圆心角为.
【分析】
(1)依次计算每一项正确的数量,即可判断条形统计图的错误;
(2)利用样本估计总体的思想解决问题即可;
(3)用360°乘以“D”类人数所占比例即可;.
【详解】
解:(1)C项错误,学生数应为12,理由如下:
A类学生数是:,
B类学生数是:,
C类学生数是:,
D类学生数是:,
所以,C项错误,学生数应为12.
(2)该校有3000名学生,估计学生阅读量为B类人数:(人).
所以,该校有3000名学生,估计全校共1200学生阅读量为B类.
(3)D类学生在扇形统计图中的圆心角:.
所以,D类学生在扇形统计图中的圆心角为.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
3、(1)31;51;(2)43人.
【分析】
(1)利用组中值的计算方程直接计算即可得;
(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解即可.
【详解】
解:(1),
,
故答案为:31;51;
(2)(人),
答:该2路公共汽车平均每班的载客量是43人.
【点睛】
题目主要考查组中值及加权平均数的计算方法,理解题意,掌握组中值及加权平均数的计算方法是解题关键.
4、(1)100;(2)36;(3)见解析;(4)286
【分析】
(1)用乒乓球的人数除以其百分比即可得到调查的学生数;
(2)先计算出喜欢篮球的人数,得到喜欢排球的人数,根据公式计算喜欢排球的人数在扇形统计图中所占的圆心角度数;
(3)根据(2)的数据补全统计图;
(4)用学校的总人数乘以喜欢排球的比例即可得到答案.
【详解】
解:调查的学生有(名),
故答案为:100;
(2)喜欢篮球的人数有(名),
喜欢排球的人数是100-30-20-40=10(名),
∴喜欢排球的人数在扇形统计图中所占的圆心角是,
故答案为:36;
(3)如图:
(4)该校喜欢排球的学生有(人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
5、(1)100人;(2)图形见解析,72°;(3)500人
【分析】
(1)根据“在线阅读”的人数和比例即可求解总人数;
(2)根据总人数,求出“在线答疑”的人数,然后补全条形统计图;利用“在线答疑”的人数÷总人数×360°即可得到对应圆心角的度数;
(3)根据“在线阅读”人数的占比×总人数即可得到结论.
【详解】
解:(1)25÷25%=100(人),
∴本次调查的人数为100人;
(2)∵本次调查的人数为100人,
∴“在线答疑”的人数为:100-25-40-15=20(人),
补全条形统计图如图所示:
“在线答疑”所占圆心角度数为:;
(3)由题意,对“在线阅读”感兴趣的人数占比为:,
∴(人),
∴估计该校学生对“在线阅读”感兴趣共有500人.
【点睛】
本题考查条形统计图与扇形统计图信息综合,通过对条形统计图与扇形统计图信息的分析,准确求出调查的总人数是解题关键.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题,共20页。试卷主要包含了一组数据等内容,欢迎下载使用。
八年级下册第十七章 方差与频数分布综合与测试同步测试题: 这是一份八年级下册第十七章 方差与频数分布综合与测试同步测试题,共21页。
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题,共22页。试卷主要包含了下列说法正确的是,下列说法中正确的是.等内容,欢迎下载使用。