北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题
展开京改版八年级数学下册第十七章方差与频数分布同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
3、如表是某次射击比赛中10名选手的射击成绩(环):
射击成绩(环) | 6 | 7 | 8 | 9 | 10 |
人数(人) | 1 | 2 | 4 | 2 | 1 |
关于这10名选手的射击环数,下列说法不正确的是( )
A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.2
4、甲、乙两位同学连续五次的数学成绩如下图所示:
下列说法正确的是( )
A.甲的平均数是70 B.乙的平均数是80
C.S2甲>S2乙 D.S2甲=S2乙
5、下列说法中正确的是( ).
A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查
C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小
6、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是( )
A.平均数为30,方差为8 B.平均数为32,方差为8
C.平均数为32,方差为20 D.平均数为32,方差为18
7、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,,,,这四个旅游团中年龄相近的旅游团是( )
A.甲团 B.乙团 C.丙团 D.丁团
8、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )
A.众数是11 B.平均数是12 C.方差是 D.中位数是13
9、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
10、某体育场大约能容纳万名观众,在一次足球比赛中,上座率为.估一估,大约有多少名观众观看了比赛?( )
A. B. C.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为、,则身高较整齐的球队是________队(填“甲”或“乙”).
2、圆周率π≈3.141592653589793,数字5出现的频数是____.
3、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______.
| 甲 | 乙 |
平均数 | 368 | 320 |
方差 | 2.5 | 5.6 |
4、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.
5、某校九年级进行了3次体育中考项目—1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是=0.01,=0.009,=0.0093.则甲、乙、丙三位同学中成绩最稳定的是________.
三、解答题(5小题,每小题10分,共计50分)
1、在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:
劳动时间(时) | 人数 | 占整体的百分比 |
0.5 | 12 | 12% |
1 | 30 | 30% |
1.5 | x | 40% |
2 | 18 | y |
合计 | m | 100% |
(1)统计表中的x= ,y= ;
(2)被调查同学劳动时间的中位数是 时;
(3)请将条形统计图补充完整;
(4)求所有被调查同学的平均劳动时间.
(5)若该校有1500名学生,试估计双休日在各自社区参加2小时义务劳动的学生有多少?
2、本校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数;
本校部分学生体质健康测试成绩统计图
(2)本校规定达到3分才算合格. 已知本校共有学生1600人,根据以上数据估计本校学生体质健康测试成绩达到合格的人数;
(3)为了更好贯彻落实健康第一的指导思想,请你根据以上数据对本校体育老师提出一条合理的建议.
3、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.
级别 | 观点 | 频数(人数) |
A | 大气气压低,空气不流动 | 80 |
B | 地面灰尘大,空气湿度低 | m |
C | 汽车尾气排放 | n |
D | 工厂造成的污染 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= ,扇形统计图中E组所占的百分比为 %;
(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.
(3)治污减霾,你有什么建议?
4、甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:
选手 组数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | 98 | 90 | 87 | 98 | 99 | 91 | 92 | 96 | 98 | 96 |
乙 | 85 | 91 | 89 | 97 | 96 | 97 | 98 | 96 | 98 | 98 |
(1)根据上表数据,完成下列分析表:
| 平均数 | 众数 | 中位数 | 方差 | 极差 |
甲 | 94.5 |
| 96 | 16.65 | 12 |
乙 | 94.5 |
|
| 18.65 |
|
(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?
5、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?
(2)请通过计算补全条形统计图;
(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
-参考答案-
一、单选题
1、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.
2、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
3、B
【分析】
根据众数、中位数、平均数及方差的定义逐一计算可得答案.
【详解】
解:这组数据中8出现次数最多,即众数为8;
其中位数是第5、6个数据的平均数,故其中位数为;
平均数为,
方差为,
故选:B.
【点睛】
本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.
4、D
【分析】
根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案
【详解】
由条形统计图可知,甲的平均数是,故A选项不正确;
乙的平均数是,故B选项不正确;
甲的方差为,
乙的方差为,
故C选项不正确,D选项正确;
故选D.
【点睛】
本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.
5、B
【分析】
分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.
【详解】
解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;
B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;
C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;
D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
6、D
【分析】
由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.
【详解】
解: 样本的平均数为10,方差为2,
故选D
【点睛】
本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.
7、B
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S=6,S=1.8,S=5,S=8,
∴1.8<5<6<8
∴S最小,
∴这四个旅游团中年龄相近的旅游团是:乙团.
故选:B.
【点睛】
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
8、D
【分析】
根据中位数、平均数、众数和方差的定义计算即可得出答案.
【详解】
解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;
B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意;
C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;
D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;
故选:D.
【点睛】
本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.
9、B
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
10、B
【分析】
根据体育场的容量×上座率计算即可.
【详解】
解:∵某体育场大约能容纳万名观众,上座率为.
∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.
故选:B.
【点睛】
本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.
二、填空题
1、甲
【分析】
根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
解:∵S2甲<S2乙
∴身高较整齐的球队是甲队.
故答案为:甲.
【点睛】
本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
2、3
【分析】
从数5出现的次数即可得出答案.
【详解】
在中,5出现了3次,
∴数字5出现的频数是3.
故答案为:3.
【点睛】
本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键.
3、甲
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.
【点睛】
此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、
【分析】
结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.
【详解】
∵1,a,3,6,7,它的平均数是5
∴
∴
∴这组数据的方差是:
故答案为:.
【点睛】
本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.
5、乙
【分析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵s甲2=0.01,s乙2=0.009,s丙2=0.0093,
∴s乙2<s丙2<s甲2,
∴甲、乙、丙三位同学中成绩最稳定的是乙.
故答案为:乙.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
三、解答题
1、(1)40,18%;(2)1.5;(3)见解析;(4)1.32小时;(5)270人
【分析】
(1)根据频率=,计算即可解决问题;
(2)根据中位数的定义进行解答;
(3)根据(1)求出的x的值,即可补全统计图;
(4)根据平均数的定义计算即可;
(5)用该校的总人数乘以双休日在各自社区参加2小时义务劳动的学生所占的百分比即可.
【详解】
解:(1)被调查的同学的总人数为(人),
∴,,
故答案为:40,0.18;
(2)把这些数从小到大排列,中位数是第50、51个数的平均数,
则中位数是(小时);
故答案为:1.5;
(3)根据(1)补全统计图如下:
(4)所有被调查同学的平均劳动时间是:(小时);
(5)根据题意得:(人),
答:估计双休日在各自社区参加2小时义务劳动的学生有270人.
【点睛】
本题主要考查了条形统计图,平均数、中位数,用样本估计总体,根据统计图找出有用信息是解答此题的关键.
2、(1)平均数是2.75分、中位数是3分,众数是3分;(2)1000人;(3)(加强体育锻炼)答案不唯一.
【分析】
(1)根据平均数,众数及中位数的求法依次计算即可;
(2)利用总人数乘以合格人数占抽查总人数的比例即可;
(3)抓住健康第一,建议合理即可.
【详解】
解:(1)平均数为:;
抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;
将这120人的得分从小到大排列处在60,61两个位置的分数都是3分,因此中位数是3分;
答:这组数据的平均数是2.75分,中位数是3分,众数是3分;
(2)估计本校学生体质健康测试成绩达到合格的人数为:
(人),
∴估计本校学生体质健康测试成绩达到合格的人数为1000人;
(3)加强体育锻炼(答案不唯一,合理即可).
【点睛】
题目主要考查从条形统计图获取信息,计算平均数,中位数,众数及利用部分估计整体,熟练掌握各个数据的计算方法是解题关键.
3、(1)400,100,15;(2)60万人;(3)见解析
【分析】
(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;
(2)根据全市总人数乘以D类所占比例,可得答案;
(3)根据以上图表提出合理倡议均可.
【详解】
解:(1)本次调查的总人数为80÷20%=400(人),
则B组人数m=400×10%=40(人),
C组人数n=400﹣(80+40+120+60)=100(人),
∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;
(2)200×=60(万人),
答:估计其中持D组“观点”的市民人数有60万人;
(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.
倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.
【点睛】
本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.
4、(1)见解析;(2)选择甲选手参加比赛,理由见解析
【分析】
(1)分别根据众数、中位数和极差的概念填充表格即可;
(2)根据方差即可确定选择哪位选手参加比赛.
【详解】
解:(1)根据表中甲、乙两名选手的成绩可知甲、乙的成绩的众数均为98;
将乙选手的成绩从小到大排列可得:85,89,91,96,96,97,97,98,98,98,
∴乙的中位数为:;
乙选手成绩的极差为:98-85=13.
填充表格如下所示:
| 平均数 | 众数 | 中位数 | 方差 | 极差 |
甲 | 94.5 | 98 | 96 | 16.65 | 12 |
乙 | 94.5 | 98 | 96.5 | 18.65 | 13 |
(2)∵S甲2<S乙2,
∴甲的成绩比较稳定,
∴选择甲选手参加比赛.
【点睛】
本题考查了众数、中位数和极差的概念及方差在实际生活中的应用,利用方差可以确定数据的波动大小,也就是数据的稳定性,由此即可解决问题;同时该题的计算量比较大,要注意细心运算.
5、(1)40;(2)见解析;(3)360
【分析】
(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;
(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;
(3)用总数量乘以样本中科普类书籍数量所占比例可得.
【详解】
(1)本次抽样调查的书有8÷20%=40(本);
(2)其它类的书的数量为40×15%=6(本),
补全图形如下:
(3)估计科普类书籍的本数为1200×=360(本).
【点睛】
本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。
北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共19页。试卷主要包含了已知一组数据的方差s2=[等内容,欢迎下载使用。
2021学年第十七章 方差与频数分布综合与测试当堂检测题: 这是一份2021学年第十七章 方差与频数分布综合与测试当堂检测题,共21页。