初中北京课改版第十四章 一次函数综合与测试同步达标检测题
展开
这是一份初中北京课改版第十四章 一次函数综合与测试同步达标检测题,共23页。试卷主要包含了下列命题为真命题的是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )A.k1>k2>k3>k4 B.k1>k2>k4>k3C.k2>k1>k3>k4 D.k4>k3>k2>k12、若直线y=kx+b经过第一、二、三象限,则函数y=bx﹣k的大致图象是( )A. B. C. D.3、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四4、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限5、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )A. B. C. D.6、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)7、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )A. B. C. D.8、如图,一次函数的图象经过点,则下列结论正确的是( )A.图像经过一、二、三象限 B.关于方程的解是C. D.随的增大而减小9、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )A. B. C. D.10、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,函数y=mx+3与y=的图象交于点A(a,2),则方程组的解为______.2、平面直角坐标系中,点P(3,-4)到x轴的距离是________.3、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.4、任何一个以x为未知数的一元一次不等式都可以变形为_____(a≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.5、已知一次函数的图象经过点和,则_______(填“>”“<”或“=”)三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象可由函数y=x的图象平移得到,且经过点(﹣2,0).(1)求一次函数y=kx+b的表达式;(2)将一次函数y=kx+b在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示).①根据图象,当x>﹣2时,y随x的增大而 ;②请再写出两条该函数图象的性质.2、在平面直角坐标系中,,且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:(1)如图1,若,求的面积;(2)如图1,若,且,求D点的坐标;(3)如图2,若,以为边,在的右侧作等边,连接,当最短时,求A,E两点之间的距离;3、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.(1)求的面积;(2)在图中作出关于轴的对称图形;(3)写出点,的坐标.4、某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是 ,每台电脑的销售价是 万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式: ;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.5、阅读下列一段文字,然后回答问题.已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度. -参考答案-一、单选题1、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【详解】解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.则k1>k2>k3>k4,故选:A.【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.2、D【解析】【分析】直线y=kx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.【详解】解:直线y=kx+b经过第一、二、三象限,则,时,函数y=bx﹣k的图象经过第一、三、四象限,故选:D.【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.3、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,∴该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.4、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,∴k<0,∴-k>0,∴一次函数y=kx-k的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.6、A【解析】【分析】由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.【详解】解:由题意可知BO=CO,∵又AB=AC,∴AO⊥BC,∴点A在y轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.7、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,,图象不过点,选项A不合题意;当x=-1时,,图象不过点,选项B不合题意;当x=-1时,,图象不过点,选项C不合题意;当x=-1时,,图象过点,选项D合题意;故选择:D.【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.8、A【解析】【分析】根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,,即可知随的增大而增大,进而判断D选项【详解】A. 图像经过一、二、三象限,故该选项正确,符合题意;B. 关于方程的解不一定是,不正确,不符合题意C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;D. 图象经过一、二、三象限,,随的增大而增大,故该选项不正确,不符合题意;故选A【点睛】本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键.9、C【解析】【分析】因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.【详解】解:正比例函数的函数值随的增大而减小,,一次函数的图象经过一、三、四象限.故选C.【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.10、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、【解析】【分析】把(a,2)代入y=-2x中,求得a值,把交点的坐标转化为方程组的解即可.【详解】∵函数y=mx+3与y=的图象交于点A(a,2),∴-2a=2,解得a=-1,∴A(-1,2),∴方程组的解为,故答案为:.【点睛】本题考查了一次函数的交点与二元一次方程组的关系,正确理解一次函数解析式的交点坐标与由解析式构成的二元一次方程组的解的关系是解题的关键.2、4【解析】【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.3、y=48x+20(x>2)##y=20+48x(x>2)【解析】【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:y=(60x-100)×0.8+100=48x+20(x>2),故答案为:y=48x+20(x>2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.4、 ax+b>0或ax+b<0 y=ax+b 自变量【解析】【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x为未知数的一元一次不等式都可以变形为ax+b>0或ax+b<0 (a≠0)的形式,所以解一元一次不等式相当于在某个一次函数y=ax+b的值大于0或小于0时,求自变量的取值范围.故答案为:ax+b>0或ax+b<0;y=ax+b;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、>【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小,判断即可.【详解】∵一次函数的图象经过点和,且k<0,∴k<0,∵-2<3,∴>,故答案为:>.【点睛】本题考查了一次函数的基本性质,灵活运用性质是解题的关键.三、解答题1、(1)y=x+2;(2)①增大;②函数有最小值0;函数图象关于直线x=﹣2对称【解析】【分析】(1)先根据直线平移时k的值不变得出k=1,再将点(﹣2,0)代入y=x+b,求出b的值,即可得到一次函数的解析式;(2)观察图象即可求得.【详解】解:(1)∵一次函数y=kx+b的图象由函数y=x的图象平移得到,∴k=1,又∵一次函数y=x+b的图象过点(﹣2,0),∴﹣2+b=0.∴b=2,∴这个一次函数的表达式为y=x+2;(2)将一次函数y=kx+b在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示).①根据图象,当x>﹣2时,y随x的增大而增大,故答案是:增大;②函数有最小值0;函数图象关于直线x=﹣2对称.【点睛】本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键.2、 (1)的面积为12;(2) D点的坐标为;(3) A,E两点之间的距离为.【解析】【分析】(1)利用完全平方式和绝对值的性质求出a, b,然后确定A、B两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;(3)首先根据已知推出 ,得到∠DBC=∠EAC=120°,进一步推出 ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.【详解】解: (1) :∵,由非负性可知: ,解得: ∴A(3,0), B(-3,0), AB=3-(-3)=6,∵ C(0,4),∴OC=4,∴;(2)由(1)知A(3,0), B(-3,0),∴OA=OB,∵OC⊥AB,∴∠AOC=∠BOC=90°,在△AOC和△BOC中, ,∴ ,∴∠CBO=∠CAO,∵∠CDA=∠CDE +∠ADE=∠BCD+∠CBA,∠CBA=∠CDE,∴∠ADE=∠BCD,在△BCD和△ADE中, ,∴,∴CB= AD,∵ B(-3,0), C(0,4),∴OB=3,OC=4, ∴ ,∴AD=BC=5,∵A(3,0),∴D(-2,0);(3)由(2) 可知CB=CA,∵∠CBA=60°,∴△ABC为等边三角形,∠BCA=60°, ∠DBC=120°,∵△CDE为等边三角形,∴CD=CE,∠DCE=60°,∵∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA,∴∠DCB=∠ECA,在△DCB和△ECA中, ,∴△DCB≌△ECA( SAS),∴∠DBC=∠EAC= 120°,∵∠EAC+∠ACB= 120°+60°= 180°,∴,即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,∵要使得OE最短,∴如图所示,当OE⊥PQ时,满足OE最短,此时∠OEA=90°,∵∠DBC=∠EAC=120°,∠CAB=60°,∴∠OAE=∠EAC-∠CAB=60°,∠AOE= 30°,∵ A(3,0),∴OA=3,∴ ∴当OE最短时,A,E两点之间的距离为.【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键.3、(1);(2)见解析;(3)A1(1,5),C1(4,3)【解析】【分析】(1)根据三角形面积公式进行计算即可得;(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;(3)根据(2)即可写出.【详解】解:(1)(2)如下图所示: (3)A1(1,5);C1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.4、(1)y=0.8x,0.8;(2)y2=0.4x+3;(3)见解析;(4)8台【解析】【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入−每天的总成本,列出函数关系式,根据题意得到不等式,解不等式即可.【详解】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y-y2=0.8x-(0.4x+3)=0.4x-3,当W>0,即0.4x-3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点睛】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是解题关键.5、(1)5;(2)能,理由见解析;(3),【解析】【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.【详解】(1)∵A、B两点在平行于y轴的直线上∴AB=即A、B两点间的距离为5(2)能判定△DEF的形状由两点间距离公式得:,,∵DE=DF∴△DEF是等腰三角形(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小由对称性知:点G的坐标为,且PG=PF∴PD+PF=PD+PG≥DG即PD+PF的最小值为线段DG的长设直线DG的解析式为,把D、G的坐标分别代入得:解得:即直线DG的解析式为上式中令y=0,即,解得即点P的坐标为由两点间距离得:DG=所以PD+PF的最小值为 【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共23页。试卷主要包含了已知一次函数y=,已知点等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题,共20页。试卷主要包含了一次函数的一般形式是,若一次函数y=kx+b等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试单元测试当堂检测题,共22页。试卷主要包含了若一次函数y=kx+b,点在第四象限,则点在第几象限等内容,欢迎下载使用。