初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题
展开京改版八年级数学下册第十四章一次函数专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )
A.100 m/min,266m/min B.62.5m/min,500m/min
C.62.5m/min,437.5m/min D.100m/min,500m/min
2、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )
A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
3、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
4、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
5、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )
A.﹣1 B.0 C.1 D.2
6、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
7、变量,有如下关系:①;②;③;④.其中是的函数的是( )
A.①②③④ B.①②③ C.①② D.①
8、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
9、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
10、关于一次函数y=﹣2x+3,下列结论正确的是( )
A.图象与x轴的交点为(,0)
B.图象经过一、二、三象限
C.y随x的增大而增大
D.图象过点(1,﹣1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一次函数y=kx+b(k≠0)的图象是____,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向____平移,当b<0时,向____平移).
2、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.
3、如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为________.
4、在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:
(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _____.
(2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _____.
5、如图,直线l:y=﹣x,点A1坐标为(﹣3,0).经过A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2021的坐标为_____.
三、解答题(5小题,每小题10分,共计50分)
1、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:
A商场:买一盒大气球,送一盒小气球;
B商场:一律九折优惠;
(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;
(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?
2、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
3、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
4、已知一次函数的图象平行于直线,且经过点.求这个一次函数的解式.
5、综合与探究:
如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.
(1)求A,B两点的坐标;
(2)求直线BC的表达式,并直接写出点C的坐标;
(3)请从A,B两题中任选一题作答.我选择 题.
A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;
B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.
【详解】
解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;
公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.
故选:D.
【点睛】
本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
2、A
【解析】
【分析】
根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
【详解】
解:∵轴,且,点B在第二象限,
∴点B一定在点A的左侧,且两个点纵坐标相同,
∴,即,
故选:A.
【点睛】
题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
3、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
4、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
5、A
【解析】
【分析】
用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.
【详解】
解:把点(0,1)和(1,3)代入y=ax+b,得:,
解得,
∴b﹣a=1﹣2=﹣1.
故选:A.
【点睛】
本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.
6、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
7、B
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.
【详解】
解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
④,当时,,则y不是x的函数;
综上,是函数的有①②③.
故选:B.
【点睛】
本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.
8、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
9、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
10、A
【解析】
【分析】
利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.
【详解】
解:A.当y=0时,﹣2x+3=0,解得:x=,
∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;
B.∵k=﹣2<0,b=3>0,
∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;
C.∵k=﹣2<0,
∴y随x的增大而减小,选项C不符合题意;
D.当x=1时,y=﹣2×1+3=1,
∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.
故选:A.
【点睛】
本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.
二、填空题
1、 一条直线 上 下
【解析】
【分析】
根据一次函数的性质填写即可.
【详解】
解:∵函数为一次函数,
∴一次函数y=kx+b(k≠0)的图象是一条直线,它可以看作由直线y=kx(k≠0)平移|b|个单位而得到(当b>0时,向上平移,当b<0时,向下平移).
故答案为:①一条直线 ②上 ③下.
【点睛】
本题考查了一次函数的性质,做题的关键是牢记性质准确填写.
2、﹣2
【解析】
【分析】
由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.
【详解】
解:如图,
由,可知当,不论k取何值,,
即直线y=kx﹣2k+1恒过,
又因为点O为坐标原点,点A(4,2),可知为OA中点,
可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,
所以代入点B(0,5)可得:,解得:.
故答案为:.
【点睛】
本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.
3、(,3)##(,3)
【解析】
【分析】
过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即OB×AB=5.5,可解AB,则A点坐标可求.
【详解】
解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,
则AC=OB,AB=OC.
∵正方形的边长为1,
∴OB=3.
∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,
∴两边的面积分别为3.5.
∴△AOB面积为3.5+2=5.5,即OB×AB=5.5,
×3×AB=5.5,解得AB=.
所以点A坐标为(,3).
故答案为:(,3).
【点睛】
本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.
4、 4.5 ##
【解析】
【分析】
(1)把P(1,3)分别代入直线l1、 l2,求出直线,再求出两直线与x轴的交点,即可求解;
(2)分别表示出C,D的坐标,根据线段CD长为2,得到关于a的方程,故可求解.
【详解】
解:(1)把P(1,3)代入l1:y=2x+m得3=2+m
解得m=1
∴l1:y=2x+1
令y=0,∴2x+1=0
解得x=-,
∴A(-,0)
把P(1,3)代入l2:y=﹣x+n得3=-1+n
解得n=4
∴l1:y=﹣x+4
令y=0,∴﹣x+4=0
解得x=4,
∴B(4,0)
∴AB=4-(-)=4.5;
故答案为:4.5;
(2)∵已知直线x=a(a>1)分别与l1、l2相交于C,D两点,
设C点坐标为(a,y1),D点坐标为(a,y2),
∴y1=2a+1,y2=﹣a+4
∵CD=2
∴
解得a=或a=
∵a>1
∴a=.
故答案为:.
【点睛】
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.
5、(﹣,0)
【解析】
【分析】
先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2021的坐标.
【详解】
解:∵点A1坐标为(﹣3,0),
∴OA1=3,
在y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),
∴由勾股定理可得OB1==5,即OA2=5=3×,
同理可得,
OB2=,即OA3==5×()1,
OB3=,即OA4==5×()2,
以此类推,
OAn=5×()n﹣2=,
即点An坐标为(﹣,0),
当n=2021时,点A2021坐标为(﹣,0),
故答案为:(﹣,0).
【点睛】
本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式y=﹣x.
三、解答题
1、(1)A:y=10x+160,B:y=9x+180;(2)A商场更合算
【解析】
【分析】
(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;
(2)先求A、B两商场花费函数的值,比较大小即可.
【详解】
解:(1)A:y=50×4+10(x-4)=10x+160,
B:y=(50×4+10x)×90%=9x+180;
(2)当时,A:10×10+160=260元,
B:9×10+180=270元,
∵260<270,
∴选择在A商场购买比较合算.
【点睛】
本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
2、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
【解析】
【分析】
(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
【详解】
解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
如图所示:即为作出的平面直角坐标系;
(2)根据图形得出出点C(4,7)
∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
∵A(1,3),B (2,1),C(4,7),
∴A1(-1,3),B1(-2,1),C1(-4,7),
在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
顺次连接A1B1, B1C1, C1 A1,
如图所示:△A1B1C1即为所求,
故答案为:(-2,1);
(3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
∵点C的对称点为C1,
∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
∵B(2,1),C1(-4,7),
∴C1G=7-1=6,BG=2-(-4)=6,
∴C1G=BG,
∴△GBC1为等腰直角三角形,
∴∠GBC1=45°,
∵∠OHB=90°,
∴△PHB为等腰直角三角形,
∴yP-1=2-0,
解得yP=3,
∴点P(0,3).
故答案为(0,3).
【点睛】
本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
3、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据SAS即可证明△AOB≅△COD;
(2)过点作CH∥x轴,交BD于点H,得出AB∥CH∥OD,由平行线的性质得∠BAP=∠HCP,由轴得∠DCH=∠ODC=90°,由△AOB≅△COD得OB=OD,故可得∠ODB=45°,从而得出∠CHD=∠CDH=45°,推出CH=CD=AB,根据AAS证明△ABP≅△CHP,得出AP=CP即可得证;
(3)延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,根据SAS证明△AGM≅△FGE,得出AM=EF,∠AMG=∠GEF,故AM∥EJ,由平行线的性质得出∠MAO=∠AJE,进而推出∠MAO=∠ECO,根据SAS证明△MAO≅△ECO,故OM=OE,∠AOM=∠EOC,即可证明∠OEG=45°.
【详解】
(1)∵AB⊥y轴于点,轴于点,
∴∠ABO=∠CDO=90°,
∵A(-2,6),C(6,2),
∴AB=CD=2,OB=OD=6,
∴△AOB≅△COD(SAS);
(2)
如图2,过点作CH∥x轴,交BD于点H,
∴AB∥CH∥OD,
∴∠BAP=∠HCP,
∵CD⊥x轴,
∴∠DCH=∠ODC=90°,
∵△AOB≅△COD,
∴OB=OD,
∴∠ODB=45°,∠CHD=∠ODB=45°,∠CDH=90°-45°=45°,
∴CH=CD=AB,
在△ABP与△CHP中,
∠APB=∠CPH∠BAP=∠HCPAB=CH,
∴△ABP≅△CHP(AAS),
∴AP=CP,即点为AC中点;
(3)
如图3,延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,
∵AG=GF,∠AGE=∠FGE,GM=GE,
∴△AGM≅△FGE(SAS),
∴AM=EF,∠AMG=∠GEF,
∴AM∥EJ,
∴∠MAO=∠AJE,
∵EF=EC,
∴AM=EC,
∵∠AOC=∠CEJ=90°,
∴∠AJE+∠EJO=180°,∠EJO+ECO=180°,
∴∠AJE=∠ECO,
∴∠MAO=∠ECO,
∵AO=CO,
∴△MAO≅△ECO(SAS),
OM=OE,∠AOM=∠EOC,
∴∠MOE=∠AOC=90°,
∴∠MEO=45°,即∠OEG=45°.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
4、y=12x+2
【解析】
【分析】
首先设出一次函数的解析式为,然后根据一次函数的图象平行于直线求出k的值,然后将点代入求解即可.
【详解】
解:设一次函数的解析式为.
∵一次函数的图象平行于直线,
∴k=12,
∵一次函数的图象经过点A(2,3),
∴3=12×2+b,
∴b=2.
∴一次函数的解析式为y=12x+2.
【点睛】
此题考查了待定系数法求一次函数表达式,两条一次函数图像平行的性质,解题的关键是熟练掌握待定系数法求一次函数表达式.
5、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
【解析】
【分析】
(1)根据坐标轴上点的坐标特征求A点和B点坐标;
(2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;
(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.
B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.
【详解】
解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);
当x=0时,y=x+3=3,则B点坐标为(0,3);
(2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,
∴直线BC的表达式为y=﹣x+3,
当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);
(3)A.过点P作PH⊥x轴于H,
设点P(x,x+3),
∴PH=,
∵A点坐标为(﹣6,0),C点坐标(3,0),
∴AC=9,
∵S△ACP=AC•PH=×9•PH=18,
∴PH=4,
∴x+3=±4,
当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,
∴存在,点P的坐标为(2,4)或(﹣14,﹣4);
B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.
设点P(x,x+3),则Q(x,﹣x+3),
∴PQ=,
∵B点坐标(0,3),C点坐标(3,0),
∴OB=OC=3,
∴BC=,
∵PQ=BC,
∴,解得:x=或﹣,
∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
【点睛】
此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.
初中数学第十四章 一次函数综合与测试课时作业: 这是一份初中数学第十四章 一次函数综合与测试课时作业,共25页。试卷主要包含了下面哪个点不在函数的图像上.,已知函数和 的图象交于点P等内容,欢迎下载使用。
初中数学第十四章 一次函数综合与测试练习: 这是一份初中数学第十四章 一次函数综合与测试练习,共24页。试卷主要包含了已知一次函数与一次函数中,函数等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共26页。试卷主要包含了变量,有如下关系,已知点A,正比例函数y=kx的图象经过一等内容,欢迎下载使用。