初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题,共20页。试卷主要包含了一次函数的一般形式是,若一次函数y=kx+b等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.42、函数y=的自变量x的取值范围是( )A.x≠0 B.x≠1 C.x≠±1 D.全体实数3、已知点A(a+9,2a+6)在y轴上,a的值为( )A.﹣9 B.9 C.3 D.﹣34、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )A.k=0 B.k=1 C.k=2 D.k=35、一次函数的一般形式是(k,b是常数)( )A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x6、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为( )A.x<0 B.x>0 C.x>1 D.x<17、下列函数中,y随x的增大而减小的函数是( )A. B.y=6﹣2x C. D.y=﹣6+2x8、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.当乙摩托车到达A地时,甲摩托车距离A地kmD.经过0.25小时两摩托车相遇9、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )A. B. C. D.10、第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点在直角坐标系的轴上,等于 ____.2、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.3、平面直角坐标系中,点P(3,-4)到x轴的距离是________.4、一次函数与的图象如图所示,则关于、的方程组的解是______.5、一次函数y1=ax+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123… y2…﹣3﹣113… 则关于x的方程ax﹣mx=n﹣b的解是_________.三、解答题(5小题,每小题10分,共计50分)1、某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是 ,每台电脑的销售价是 万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式: ;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.2、在正比例函数y=(k-3)x|k-3|中,函数值y随x的增大而减小,求k的值.3、为响应政府号召,某地水果种植户借助电商平台,在线下批发的基础上同步在电商平台上零售水果.已知线上零售40千克,线下批发80千克水果共获得4000元;线上零售60千克和线下批发80千克水果销售额相同.(1)求线上零售和线下批发水果的单价分别为每千克多少元?(2)若该地区水果种植户张大叔某月线上零售和线下批发共销售水果2000千克,设线上零售m千克.获得的总销售额为w元.①求w与m之间的函数关系式;②若总销售额为70000元,则线上零售量为多少千克?4、如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.5、已知函数y=(m-3)x+(m2-9),当m取何值时,y是x的正比例函数? -参考答案-一、单选题1、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.2、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.3、A【解析】【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解.【详解】∵当x1<x2时,y1>y2∴一次函数y=(k)x+2的y随x的增大而减小∴∴∴k的值可能是0故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.5、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.6、D【解析】【分析】利用函数的增减性和x=1时的函数图像上点的位置来判断即可.【详解】解:如图所示:k>0,函数y= kx+b随x的增大而增大,直线过点B(1,1),∵当x=1时,kx+b=1,即kx+b-1=0,∴不等式kx+b﹣1<0的解集为:x<1.故选择:D.【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.7、B【解析】【分析】根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.【详解】解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=2>0,∴y随x的增大而增大,故本选项错误.故选:B.【点睛】本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.8、D【解析】【分析】由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:20÷0.6=(km/h),则甲行驶0.3h时的路程为:×0.3=10(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:×0.5=(km),故选项C正确;乙的速度为:20÷0.5=40(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;故选:D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答.9、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:,∴直线的解析式为,∵将直线向下平移8个单位得到直线,∴直线的解析式为 ,∵点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,∴直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,∴直线与直线的交点坐标为.故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.10、C【解析】【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.二、填空题1、-1【解析】【分析】让纵坐标为0得到m的值,计算可得点P的坐标.【详解】解:∵点P(3,m+1)在直角坐标系x轴上,∴m+1=0,解得m=-1,故选:-1.【点睛】考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.2、(﹣3,1)【解析】【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.3、4【解析】【分析】根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|﹣4|=4.故答案为:4.【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.4、【解析】【分析】根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解【详解】解:∵一次函数与的图象交点的横坐标为,∴当,是方程组的解故答案为:【点睛】本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键.5、【解析】【分析】根据统计表确定两个函数的的交点,然后判断即可.【详解】解:根据表可得一次函数y1=ax+b与y2=mx+n的交点坐标是(2,1).故可得关于x的方程ax﹣mx=n﹣b的解是,故答案为:.【点睛】本题考查了一次函数的性质,正确确定交点坐标是关键.三、解答题1、(1)y=0.8x,0.8;(2)y2=0.4x+3;(3)见解析;(4)8台【解析】【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入−每天的总成本,列出函数关系式,根据题意得到不等式,解不等式即可.【详解】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y-y2=0.8x-(0.4x+3)=0.4x-3,当W>0,即0.4x-3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点睛】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是解题关键.2、2【解析】【分析】根据正比例函数得出|k-3|=1,解得解得k1=4, k2=2,函数值y随x的增大而减小,可得k-3<0,根据不等式解集取舍即可.【详解】解:根据题意,可得|k-3|=1且k-3<0,∴k-3=1或k-3=-1,解得k1=4, k2=2,∵k-3<0,∴k<3,∴k=2.【点睛】本题考查正比例函数定义以及自变量函数性质,掌握正比例函数定义以及自变量函数性质是解题关键.3、(1)线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①;②线上零售量为到1000千克.【解析】【分析】(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,根据题意列出二元一次方程组求解即可;(2)①由题意可得:线上零售m千克,则线下批发千克,利用销售数量、单价、销售总价的关系即可得;②当时,代入①结论求解即可得.【详解】解:(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,由题意得:,解得:,∴线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①由题意可得:线上零售m千克,则线下批发千克, ,即函数关系式为:;②由(1)可得:当时,,解得:,∴线上零售量为到1000千克.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应的方程及函数解析式是解题关键.4、(1)点A、B的坐标分别为(6,0),(0,3),点C(2,2);△COB的面积=3;(2)P(4,1);(3)点Q的坐标为(0,)或(0,)或(0,)【解析】【分析】(1)点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3得:点C(2,2);△COB的面积=,即可求解;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,即可求解;(3)分∠MQN=90°、∠QNM=90°、∠NMQ=90°三种情况,分别求解即可.【详解】解:(1)直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=-x+3并解得:x=2,故点C(2,2);△COB的面积==×3×2=3;(2)设点P(m,-m+3),S△COP=S△COB,则BC=PC,则(m-2)2+(-m+3-2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3-m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3-m-n,n-m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3-m-m=m,解得:m=,n==3-;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.5、-3【解析】【分析】根据正比例函数定义即可求解.【详解】解:∵y=(m-3)x+(m2-9)是正比例函数,∴m2-9=0且m-3≠0,∴m=.【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义“形如(k为常数,且k≠0)的函数叫正比例函数”是解题关键 .
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共25页。试卷主要包含了已知一次函数与一次函数中,函数等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共22页。试卷主要包含了点在等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试单元测试当堂检测题,共22页。试卷主要包含了若一次函数y=kx+b,点在第四象限,则点在第几象限等内容,欢迎下载使用。