数学八年级下册第十四章 一次函数综合与测试课后作业题
展开京改版八年级数学下册第十四章一次函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:
表1:
x | … | 0 | 1 | … | |
… | 3 | 4 | … |
表2:
x | … | 0 | 1 | … | |
… | 5 | 4 | 3 | … |
则关于x的不等式的解集是( )
A. B. C. D.
3、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
4、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3 B.-1 C.2 D.4
5、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>
6、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
7、如图,直线与分别交轴于点,,则不等式的解集为( ).
A. B. C. D.或
8、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟 | 0 | 5 | 10 | 15 | 20 | 25 |
温度/℃ | 10 | 25 | 40 | 55 | 70 | 85 |
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
9、点在第四象限,则点在第几象限( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、对于直线y=kx+b(k≠0):
(1)当k>0,b>0时,直线经过第______象限;
(2)当k>0,b<0时,直线经过第______象限;
(3)当k<0,b>0时,直线经过第______象限;
(4)当k<0,b<0时,直线经过第______象限.
2、若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐为_______.
3、如果 ,y=2,那么x = ______
4、如图,已知A(6,0)、B(﹣3,1),点P在y轴上,当y轴平分∠APB时,点P的坐标为_________.
5、直线y=x-2与y轴交点坐标是_____.
三、解答题(5小题,每小题10分,共计50分)
1、某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,
(1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______;
(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;
(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?
2、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
(1)求y甲、y乙关于x的函数表达式;
(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
(3)甲出发_______小时后,甲、乙两人相距5千米.
3、利用函数图象解方程组.
4、如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+8与x轴交于点A,与y轴交于点B.
(1)A点坐标为 ,B点坐标为 ;
(2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式.
(3)在(2)的基础上若点P也在直线y=3x上,点Q在坐标轴上,当△ABP的面积等于△BAQ面积时,请直接写出点Q的坐标.
5、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:
A商场:买一盒大气球,送一盒小气球;
B商场:一律九折优惠;
(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;
(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
2、D
【解析】
【分析】
用待定系数法求出和的表达式,再解不等式即可得出答案.
【详解】
由表得:,在一次函数上,
∴,
解得:,
∴,
,在一次函数上,
∴,
解得:,
∴,
∴为,
解得:.
故选:D.
【点睛】
本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.
3、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
4、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
5、C
【解析】
【分析】
利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.
【详解】
解:函数值y随自变量x的增大而减小,那么1+2m<0,
解得m<.
故选:C.
【点睛】
本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.
6、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
7、C
【解析】
【分析】
观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
【详解】
解:由图象可得,
当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
故选:C.
【点睛】
本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
8、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
9、C
【解析】
【分析】
根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
【详解】
∵点A(x,y)在第四象限,
∴x>0,y<0,
∴﹣x<0,y﹣2<0,
故点B(﹣x,y﹣2)在第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、C
【解析】
【分析】
根据第三象限内点的坐标横纵坐标都为负的直接可以判断
【详解】
解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限
故选C
【点睛】
本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
二、填空题
1、 一、二、三 一、三、四 一、二、四 二、三、四
【解析】
【分析】
当k>0时,直线必过一、三象限,k<0时,直线必过二、四象限;当b>0时,直线必过一、二象限,b<0时,直线必过三、四象限;根据以上即可判断.
【详解】
(1)当k>0时,直线过一、三象限,b>0时,直线过一、二象限,则直线经过第一、二、三象限;
故答案为:一、二、三
(2)当k>0时,直线过一、三象限,b<0时,直线过三、四象限,则直线经过第一、三、四象限;
故答案为:一、三、四
(3)当k<0时,直线过二、四象限,b>0时,直线过一、二象限,则直线经过第一、二、四象限;
故答案为:一、二、四
(4)当k<0时,直线过二、四象限,b<0时,直线过三、四象限,则直线经过第二、三、四象限.
故答案为:二、三、四
【点睛】
本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合.
2、
【解析】
【分析】
先根据点在第二象限可得点的横坐标为负数、纵坐标为正数,再根据点到坐标轴的距离即可得.
【详解】
解:点在第二象限,
点的横坐标为负数、纵坐标为正数,
点到轴的距离为3,到轴的距离为4,
点的横坐标为、纵坐标为3,
即点的坐标为,
故答案为:.
【点睛】
本题考查了点坐标、点到坐标轴的距离,熟练掌握四个象限内的点坐标的符号规律是解题关键.
3、3
【解析】
【分析】
把y=2代入 y=x计算即可.
【详解】
解:∵y=2,
∴2=x,
∴x=3
故答案为:3.
【点睛】
本题考查了正比例函数的问题,做题的关键是掌握将y值代入即可求解.
4、
【解析】
【分析】
当y轴平分∠APB时,点A关于y轴的对称点A'在BP上,利用待定系数法求得A'B的表达式,即可得到点P的坐标.
【详解】
解:如图,当y轴平分∠APB时,点A关于y轴的对称点A'在BP上,
∵A(6,0),
∴A’ (-6,0),
设A'B的表达式为y=kx+b,
把A’ (-6,0),B(﹣3,1)代入,
可得
,
解得,
∴,
令x=0,则y=2,
∴点P的坐标为(0,2),
故答案为:(0,2).
【点睛】
本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键.
5、 (0,-2)
【解析】
【分析】
当x=0时,求y的值,从而确定直线与y轴的交点.
【详解】
解:∵当x=0时,y=-2,
∴直线y=x-2与y轴交点坐标是(0.-2).
故答案为:(0,-2).
【点睛】
本题考查一次函数与坐标轴的交点坐标,利用数形结合思想解题是关键.
三、解答题
1、(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【解析】
【分析】
(1)根据观察函数图象的横坐标,纵坐标,可得结果;
(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;
(3)将代入(2)函数解析式即可.
【详解】
解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.
故答案为:10;;
(2)设函数图象的解析式 (k是常数,b是常数,),
图象过点,,
可得:,
解得,
函数图象的解析式:;
(3)当时,
,
答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【点睛】
本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.
2、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
【解析】
【分析】
(1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
(2)联立方程组,求出方程组的解即可;
(3)分相遇前和相遇后相距5千米列出方程求解即可.
【详解】
解:(1)设直线l1的解析式为
∵直线l1过点(2,0),(0,10)
∴代入解析式得,
解得,
∴直线l1的解析式为
设直线l2的解析式为
∵直线l2过点(0.5,0),(3,10)
∴代入解析式得,
解得,
∴直线l2的解析式为.
(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
4(x-0.5)+5x=10,
解得x=.
当x=时,y甲=-5×+10=,
∴相遇时甲离B地为km.
故答案为:,
(3)由题意知:①或②
解得,或
所以,甲出发或小时后,甲、乙两人相距5千米.
故答案为:或.
【点睛】
本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.
3、.
【解析】
【分析】
直接利用两函数图象的交点横纵坐标即为x,y的值进而得出答案.
【详解】
解:方程组对应的两个一次函数为:与,
画出这两条直线,如图所示:
由图像知两直线交点坐标为(-1,1).
所以原方程组的解为.
【点睛】
此题主要考查了一次函数与二元一次方程组的解,正确利用数形结合分析是解题关键.
4、(1)(6,0)、(0,8);(2)y=8﹣2x;(3)点Q的坐标为:(0,)或(,0)或(,0)或(0,).
【解析】
【分析】
(1)令x=0,则y=8,令y=0,则x=6,即可求解;
(2)由题意得: ,从而得到 ,进而得到点P(2t,8﹣4t),则有x=2t,y=8﹣4t,即可求解;
(3)分两种情况:①当点Q在AB下方时,当点Q在AB上方时,即可求解.
【详解】
解:(1)∵y=﹣x+8,
令x=0,则y=8,令y=0,则x=6,
∴A点坐标为(6,0),B点坐标为(0,8);
(2)由题意得:,
∴点P(2t,8﹣4t),
则x=2t,y=8﹣4t,
故点P所在的直线表达式为:y=8﹣2x;
(3)当点Q在AB下方时,
将y=3x与y=8﹣2x联立并解得:x=,y=,即点P(,),
当△ABP的面积等于△BAQ面积时,点Q在过点P且平行于AB的直线上,
设过点P且平行于AB的直线表达式为:y=﹣x+b,
将点P的坐标代入上式得:=﹣×+b,解得:b=,
故函数的表达式为:y=﹣x+,
当x=0时,y=,当y=0时,x=,
即点Q(0,)或(,0).
当点Q在AB上方时,
同理可得:点Q的坐标为:(,0)或(0,);
综上点Q的坐标为:(0,)或(,0)或(,0)或(0,).
【点睛】
本题主要考查了一次函数的图象和性质,一次函数与动点问题,熟练掌握一次函数的图象和性质是解题的关键.
5、(1)A:,B:;(2)A商场更合算
【解析】
【分析】
(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;
(2)先求A、B两商场花费函数的值,比较大小即可.
【详解】
解:(1)A:,
B:;
(2)当时,A:元,
B:元,
∵,
∴选择在A商场购买比较合算.
【点睛】
本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
2020-2021学年第十四章 一次函数综合与测试课堂检测: 这是一份2020-2021学年第十四章 一次函数综合与测试课堂检测,共35页。试卷主要包含了已知点A等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共20页。试卷主要包含了点在第四象限,则点在第几象限,点P的坐标为,,两地相距80km,甲等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习,共24页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。