


数学八年级下册第十四章 一次函数综合与测试课后作业题
展开京改版八年级数学下册第十四章一次函数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A. B.
C. D.
2、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3 B.-1 C.2 D.4
3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
4、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
5、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
A.正东方向 B.正西方向 C.正南方向 D.正北方向
7、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )
A. B. C. D.
8、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
A.乙摩托车的速度较快
B.经过0.3小时甲摩托车行驶到A,B两地的中点
C.当乙摩托车到达A地时,甲摩托车距离A地km
D.经过0.25小时两摩托车相遇
9、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
10、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y<0 B.y>0 C.y<3 D.y>3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知y与成正比例,且当时,,则y与x之间的函数关系式为______________.
2、点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,则k=_____.
3、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.
4、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.
5、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.
(1)求点A、点B、点C的坐标,并求出△COB的面积;
(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;
(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.
2、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m= ,n= ;
(2)当x为何值时,甲追上了乙?
(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.
3、小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.
(1)求买一支康乃馨和一支百合各需多少元?
(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.
①求w与x之间的函数关系式;
②请你帮小美设计一种使费用最少的买花方案,并求出最少费用.
4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.
(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;
(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.
5、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.
(1)小红、小华谁的速度快?
(2)出发后几小时两人相遇?
(3)A,B两地离学校分别有多远?
-参考答案-
一、单选题
1、C
【解析】
【分析】
分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
【详解】
解:当两车相遇时,所用时间为120÷(60+90)=小时,
B车到达甲地时间为120÷90=小时,
A车到达乙地时间为120÷60=2小时,
∴当0≤x≤时,y=120-60x-90x=-150x+120;
当<x≤时,y=60(x-)+90(x-)=150x-120;
当<x≤2是,y=60x;
由函数解析式的当x=时,y=150×-120=80.
故选:C
【点睛】
本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
2、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
3、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
4、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
5、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
6、B
【解析】
【分析】
根据二人向同一方向走的距离可知二人的方向关系,解答即可.
【详解】
解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.
【点睛】
本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
7、D
【解析】
【分析】
利用x=-1时,求函数值进行一一检验是否为1即可
【详解】
解: 当x=-1时,,图象不过点,选项A不合题意;
当x=-1时,,图象不过点,选项B不合题意;
当x=-1时,,图象不过点,选项C不合题意;
当x=-1时,,图象过点,选项D合题意;
故选择:D.
【点睛】
本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.
8、D
【解析】
【分析】
由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题.
【详解】
解:由图可得,
甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;
甲的速度为:20÷0.6=(km/h),则甲行驶0.3h时的路程为:×0.3=10(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;
当乙摩托车到达A地时,甲摩托车距离A地:×0.5=(km),故选项C正确;
乙的速度为:20÷0.5=40(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;
故选:D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答.
9、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
10、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
二、填空题
1、##
【解析】
【分析】
根据题意,可设 ,将时,,代入即可求解.
【详解】
解:根据题意,可设 ,
∵当时,,
∴ ,解得: ,
∴y与x之间的函数关系式为 .
故答案为:
【点睛】
本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意 是解题的关键.
2、﹣2
【解析】
【分析】
把点P(2,﹣4)代入正比例函数y=kx中可得k的值.
【详解】
解:∵点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,
∴﹣4=2×k,
解得:k=﹣2,
故答案为:﹣2.
【点睛】
本题考查了用待定系数法求正比例函数解析式,经过函数的某点一定在函数的图象上,理解正比例函数的定义是解题的关键.
3、x>300
【解析】
【分析】
根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.
【详解】
解:由题设可得不等式kx+30<x.
∵y1=kx+30经过点(500,80),
∴k=,
∴y1=x+30,y2=x,解得:x=300,y=60.
∴两直线的交点坐标为(300,60),
∴当x>300时不等式kx+30<x中x成立,
故答案为:x>300.
【点睛】
本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
4、(﹣3,1)
【解析】
【分析】
点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.
【详解】
解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).
故答案为:(﹣3,1).
【点睛】
本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.
5、﹣2
【解析】
【分析】
由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.
【详解】
解:如图,
由,可知当,不论k取何值,,
即直线y=kx﹣2k+1恒过,
又因为点O为坐标原点,点A(4,2),可知为OA中点,
可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,
所以代入点B(0,5)可得:,解得:.
故答案为:.
【点睛】
本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.
三、解答题
1、(1)点A、B的坐标分别为(6,0),(0,3),点C(2,2);△COB的面积=3;(2)P(4,1);(3)点Q的坐标为(0,)或(0,)或(0,)
【解析】
【分析】
(1)点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3得:点C(2,2);△COB的面积=,即可求解;
(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,即可求解;
(3)分∠MQN=90°、∠QNM=90°、∠NMQ=90°三种情况,分别求解即可.
【详解】
解:(1)直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),
联立式y=x,y=-x+3并解得:x=2,故点C(2,2);
△COB的面积==×3×2=3;
(2)设点P(m,-m+3),
S△COP=S△COB,则BC=PC,
则(m-2)2+(-m+3-2)2=22+12=5,
解得:m=4或0(舍去0),
故点P(4,1);
(3)设点M、N、Q的坐标分别为(m,m)、(m,3-m)、(0,n),
①当∠MQN=90°时,
∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,
∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,
∴△NGQ≌△QHM(AAS),
∴GN=QH,GQ=HM,
即:m=3-m-n,n-m=m,
解得:m=,n=;
②当∠QNM=90°时,
则MN=QN,即:3-m-m=m,解得:m=,
n==3-;
③当∠NMQ=90°时,
同理可得:n=;
综上,点Q的坐标为(0,)或(0,)或(0,).
【点睛】
本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.
2、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.
【解析】
【分析】
(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程÷速度可求提速后所用时间,即可得到m值,进而得出n的值;
(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;
(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可.
【详解】
解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;
当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是(m/s);
∵甲出发一段时间后速度提高为原来的3倍,
∴甲提速后速度为6m/s,
故提速后甲行走所用时间为:(s),
∴m=30+60=90(s)
∴n=400÷(s);
故答案为10;2;90;100;
(2)设OA段对应的函数关系式为y=kx,
∵A(90,360)在OA上,
∴90k=360,解得k=4,
∴y=4x.
设BC段对应的函数关系式为y=k1x+b,
∵B(30,40)、C(90,400)在BC上,
∴,
解得,
∴y=6x-140,
由乙追上了甲,得4x=6x-140,
解得x=70.
答:当x为70秒时,甲追上了乙.
(3)由题意可得,
,
解得x=55或x=85,
即55≤x≤85时,甲、乙之间的距离不超过30米;
当4x=400﹣30时,
解得x=92.5,
即92.5≤x≤100时,甲、乙之间的距离不超过30米;
由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.
【点睛】
本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题.
3、(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元.
【解析】
【分析】
(1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可;
(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和康乃馨不多于9支求函数的最小值即可.
【详解】
解:(1)设买一支康乃馨需m元,买一支百合需n元,
则根据题意得:,
解得: ,
答:买一支康乃馨需4元,买一支百合需5元;
(2)①根据题意得:w=4x+5(11﹣x)=﹣x+55,
②∵康乃馨不多于9支,
∴x≤9,
∵﹣1<0,
∴w随x的增大而减小,
∴当x=9时,w最小,
即买9支康乃馨,买11﹣9=2支百合费用最少,wmin=﹣9+55=46(元),
答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.
【点睛】
本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式.
4、(1)见解析;(2)(0,)
【解析】
【分析】
(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;
(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.
【详解】
解:(1)如图,点P即为所求;
(2)∵A的坐标(0,6),点B的坐标(3,0),
∴OA=6,OB=3,
∴PA=PB=OA-OP=6-OP,
∵PB2-OP2=OB2,
∴(6-OP)2-OP2=32,
解得OP=,
∴点P的坐标为(0,).
【点睛】
本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.
5、(1)小华的速度快;(2)出发后h两人相遇;(3)A地距学校500m,B地距学校200m
【解析】
【分析】
(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;
(2)观察横坐标,可得答案;
(3)观察纵坐标,可得答案.
【详解】
解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),
由横坐标看出都用了15min,小红的速度是200÷15=(m/min),小华的速度是500÷15= (m/min),
>,小华的速度快.
(2)由横坐标看出,出发后h两人相遇.
(3)由纵坐标看出A地距学校500m,B地距学校200m.
【点睛】
本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共22页。试卷主要包含了一次函数的一般形式是,点A个单位长度.,已知一次函数与一次函数中,函数等内容,欢迎下载使用。
初中数学第十四章 一次函数综合与测试巩固练习: 这是一份初中数学第十四章 一次函数综合与测试巩固练习,共29页。试卷主要包含了正比例函数y=kx的图象经过一等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共26页。试卷主要包含了变量,有如下关系,已知点A,正比例函数y=kx的图象经过一等内容,欢迎下载使用。