北京课改版八年级下册第十四章 一次函数综合与测试习题
展开京改版八年级数学下册第十四章一次函数专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、正比例函数y=kx的图象经过一、三象限,则一次函数y=﹣kx+k的图象大致是( )
A. B.
C. D.
2、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟 | 0 | 5 | 10 | 15 | 20 | 25 |
温度/℃ | 10 | 25 | 40 | 55 | 70 | 85 |
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
3、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )
A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
5、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
6、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
7、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
8、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
9、在函数y=中,自变量x的取值范围是 ( )
A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4
10、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐为_______.
2、已知一次函数,且y的值随着x的值增大而减小,则m的取值范围是______.
3、线段AB=5,AB平行于x轴,A在B左边,若A点坐标为(-1,3),则B点坐标为_____.
4、如图,直线l:y=﹣x,点A1坐标为(﹣3,0).经过A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2021的坐标为_____.
5、如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象可由函数y=x的图象平移得到,且经过点(﹣2,0).
(1)求一次函数y=kx+b的表达式;
(2)将一次函数y=kx+b在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示).
①根据图象,当x>﹣2时,y随x的增大而 ;
②请再写出两条该函数图象的性质.
2、如图
(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?
(2)如何确定敌方战舰B的位置?
3、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
4、已知一次函数.
(1)画出函数图象.
(2)不等式>0的解集是_______;不等式<0的解集是_______.
(3)求出函数图象与坐标轴的两个交点之间的距离.
5、如图所示,在平面直角坐标系中,已知A(0,1),B(3,0),C(3,4).
(1)在图中画出△ABC,△ABC的面积是 ;
(2)在(1)的条件下,延长线段CA,与x轴交于点M,则M点的坐标是 .(作图后直接写答案)
-参考答案-
一、单选题
1、A
【解析】
【分析】
由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况.
【详解】
解:∵正比例函数y=kx的图象经过一、三象限
∴
∴
∴一次函数的图象经过一、二、四象限
故选:A
【点睛】
本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键.
2、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
3、A
【解析】
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4、B
【解析】
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
解:∵点P(m+3,2m+4)在x轴上,
∴2m+4=0,
解得:m=-2,
∴m+3=-2+3=1,
∴点P的坐标为(1,0).
故选:B.
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
5、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
6、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
7、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
8、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
9、D
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
解:∵x-3≥0,
∴x≥3,
∵x-4≠0,
∴x≠4,
综上,x≥3且x≠4,
故选:D.
【点睛】
主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
10、A
【解析】
【分析】
设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.
【详解】
解:设直线的解析式为 ,
把点,点代入,得:
,解得:,
∴直线的解析式为,
∵将直线向下平移8个单位得到直线,
∴直线的解析式为 ,
∵点关于轴对称的点为 ,
设直线的解析式为 ,
把点 ,点代入,得:
,解得:,
∴直线的解析式为,
将直线与直线的解析式联立,得:
,解得: ,
∴直线与直线的交点坐标为.
故选:A
【点睛】
本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.
二、填空题
1、
【解析】
【分析】
先根据点在第二象限可得点的横坐标为负数、纵坐标为正数,再根据点到坐标轴的距离即可得.
【详解】
解:点在第二象限,
点的横坐标为负数、纵坐标为正数,
点到轴的距离为3,到轴的距离为4,
点的横坐标为、纵坐标为3,
即点的坐标为,
故答案为:.
【点睛】
本题考查了点坐标、点到坐标轴的距离,熟练掌握四个象限内的点坐标的符号规律是解题关键.
2、m<
【解析】
【分析】
利用一次函数的性质可得出关于m的一元一次不等式,解之即可得出m的取值h^$范围.
【详解】
解:∵一次函数的y值随着x值的增大而减小,
∴3m+1<0,
∴m<.
故答案为:m<.
【点睛】
本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
3、(4,3)
【解析】
【分析】
由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.
【详解】
解:∵AB∥x轴,A点坐标为(-1,3),
∴点B的纵坐标为3,
当A在B左边时,∵AB=5,
∴点B的横坐标为-1+5=4,
此时点B(4,3).
故答案为:(4,3).
【点睛】
本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.
4、(﹣,0)
【解析】
【分析】
先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2021的坐标.
【详解】
解:∵点A1坐标为(﹣3,0),
∴OA1=3,
在y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),
∴由勾股定理可得OB1==5,即OA2=5=3×,
同理可得,
OB2=,即OA3==5×()1,
OB3=,即OA4==5×()2,
以此类推,
OAn=5×()n﹣2=,
即点An坐标为(﹣,0),
当n=2021时,点A2021坐标为(﹣,0),
故答案为:(﹣,0).
【点睛】
本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式y=﹣x.
5、(-3,4)
【解析】
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可.
【详解】
解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,
∴A(0,4),D(-1,0),C(0,-2),
∴AC=6;
联立 ,
解得,
∴点B的坐标为(-2,2),
∴,
∵,
∴可设直线AE的解析式为,
∴,
∴直线AE的解析式为,
∵E是直线AE与x轴的交点,
∴点E坐标为(2,0),
∴DE=3,
∴,
∴,
∴,
∴点P的坐标为(-3,4),
故答案为:(-3,4).
【点睛】
本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.
三、解答题
1、(1)y=x+2;(2)①增大;②函数有最小值0;函数图象关于直线x=﹣2对称
【解析】
【分析】
(1)先根据直线平移时k的值不变得出k=1,再将点(﹣2,0)代入y=x+b,求出b的值,即可得到一次函数的解析式;
(2)观察图象即可求得.
【详解】
解:(1)∵一次函数y=kx+b的图象由函数y=x的图象平移得到,
∴k=1,
又∵一次函数y=x+b的图象过点(﹣2,0),
∴﹣2+b=0.
∴b=2,
∴这个一次函数的表达式为y=x+2;
(2)将一次函数y=kx+b在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象(如图所示).
①根据图象,当x>﹣2时,y随x的增大而增大,
故答案是:增大;
②函数有最小值0;函数图象关于直线x=﹣2对称.
【点睛】
本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键.
2、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.
【解析】
【分析】
(1)根据图中的位置与方向即可确定.
(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.
【详解】
(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.
(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.
【点睛】
本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.
3、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【解析】
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
4、(1)见解析;(2)x<-3;x>-3;(3)BC=.
【解析】
【分析】
(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;
(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;
(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)
【详解】
(1)当x=0时,y=-2x-6=-6,
∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);
当y=-2x-6=0时,解得:x=-3,
∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).
描点连线画出函数图象,如图所示.
(2)观察图象可知:当x<-3时,
一次函数y=-2x-6的图象在x轴上方;
当x>-3时,一次函数y=-2x-6的图象在x轴下方.
∴不等式-2x-6>0的解集是x<-3;
不等式-2x-6<0的解集是x>-3.
故答案是:x<-3,x>-3;
(3)∵B(-3,0),C(0,-6),
∴OB=3,OC=6,
∴BC=
【点睛】
本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.
5、(1)见解析; 6;(2)作图见解析;(-1,0).
【解析】
【分析】
(1)根据A(0,1),B(3,0),C(3,4)在坐标系中描点即可;
(2)根据题意作图,由图知点M的坐标.
【详解】
(1)如图,
△ABC的面积=,
故答案为:6;
(2)如图,
设经过点A,C的直线为,代入A(0,1),C(3,4)得,
令,则
点M的坐标(-1,0),
故答案为:(-1,0).
【点睛】
本题考查平面直角坐标系中点的坐标特征、一次函数的图象与坐标轴的交点等知识,是基础考点,掌握相关知识是解题关键.
数学八年级下册第十四章 一次函数综合与测试同步训练题: 这是一份数学八年级下册第十四章 一次函数综合与测试同步训练题,共24页。试卷主要包含了点A个单位长度.,一次函数y=等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共25页。试卷主要包含了一次函数y=mx﹣n,若直线y=kx+b经过第一等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题,共25页。试卷主要包含了在下列说法中,能确定位置的是等内容,欢迎下载使用。