初中北京课改版第十四章 一次函数综合与测试当堂检测题
展开
这是一份初中北京课改版第十四章 一次函数综合与测试当堂检测题,共23页。试卷主要包含了已知点A,一次函数y=mx﹣n,一次函数y=等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)2、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四3、下面哪个点不在函数的图像上( ).A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)4、已知点A(x+2,x﹣3)在y轴上,则x的值为( )A.﹣2 B.3 C.0 D.﹣35、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )A. B. C. D.6、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )A.x≥2 B.x≤2 C.x≥3 D.x≤37、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)8、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )A.100 m/min,266m/min B.62.5m/min,500m/minC.62.5m/min,437.5m/min D.100m/min,500m/min9、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )A. B. C.3 D.10、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一次函数y1=ax+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123… y2…﹣3﹣113… 则关于x的方程ax﹣mx=n﹣b的解是_________.2、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.3、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.4、函数 的定义域是________.5、(1)由于任何一元一次方程都可转化为____(k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为_____时,求相应的_____的值.(2)一元一次方程kx+b=0的解,是直线y=kx+b与____轴交点的____坐标值.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,直线与直线相交于点(1)求m,n的值;(2)直线与x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值.2、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;(2)求当王亮距离李刚家1.5千米时,的值.3、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.(1)求购买一个型篮球、一个型篮球各需多少元?(2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;(3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?4、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益.5、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.(1)求证:△AOB≌△COD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°. -参考答案-一、单选题1、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.2、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,∴该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.3、D【解析】【分析】将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.【详解】解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.4、A【解析】【分析】根据y轴上点的横坐标为0列方程求解即可.【详解】解:∵点A(x+2,x﹣3)在y轴上,∴x+2=0,解得x=-2.故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.5、D【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.故选:D.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.7、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.8、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.故选:D.【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.9、D【解析】【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.10、B【解析】【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,∴m+3=-2+3=1,∴点P的坐标为(1,0).故选:B.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.二、填空题1、【解析】【分析】根据统计表确定两个函数的的交点,然后判断即可.【详解】解:根据表可得一次函数y1=ax+b与y2=mx+n的交点坐标是(2,1).故可得关于x的方程ax﹣mx=n﹣b的解是,故答案为:.【点睛】本题考查了一次函数的性质,正确确定交点坐标是关键.2、x>300【解析】【分析】根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.【详解】解:由题设可得不等式kx+30<x.∵y1=kx+30经过点(500,80),∴k=,∴y1=x+30,y2=x,解得:x=300,y=60.∴两直线的交点坐标为(300,60),∴当x>300时不等式kx+30<x中x成立,故答案为:x>300.【点睛】本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.3、y=48x+20(x>2)##y=20+48x(x>2)【解析】【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:y=(60x-100)×0.8+100=48x+20(x>2),故答案为:y=48x+20(x>2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.4、x≠-1【解析】【分析】根据分母不为零,即可求得定义域.【详解】解:由题意, 即 故答案为:【点睛】本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.5、 kx+b=0 0 自变量 x 横【解析】【分析】(1)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;(2)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;【详解】解:(1)由于任何一元一次方程都可转化为kx+b=0 (k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为0时,求相应的自变量的值.故答案为:kx+b=0,0,自变量;(2)一元一次方程kx+b=0的解,是直线y=kx+b与x轴交点的横坐标值.故答案为:x,横.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.三、解答题1、(1),;(2)【解析】【分析】(1)将点代入直线确定m,再将点C代入即可确定n的值;(2)利用函数解析式可得:,,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.【详解】解:(1)∵点在直线上,,,在直线上,,,,;(2)由题意得:,对于直线,令,得,,对于直线,令,得,,,,,,,∴t的值为6.【点睛】题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键.2、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2).【解析】【分析】(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;,函数过点(15,2)(30,6.5)代入得方程组,然后解方程组即可;(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.【详解】解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;函数过点(15,2)(30,6.5)代入得:,解得:,∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2)设修车之前解析式为,代入(10,2)得:,解得,∴,当s=1.5时,,解得分.【点睛】本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.3、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:;(3)A型篮球120个,则B型篮球为180个.【解析】【分析】(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;(2)A型篮球t个,则B型篮球为个,根据单价、数量、总价的关系即可得;(3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:,解得:,∴一个A型篮球为80元,一个B型篮球为50元;(2)A型篮球t个,则B型篮球为个,根据题意可得:,∴函数解析式为:;(3)根据题意可得:A型篮球单价为元,B型篮球单价为元,则,解得:,,∴A型篮球120个,则B型篮球为180个.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.4、 (1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【解析】【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为元.则,分三种情形讨论利用一次函数的性质即可解决问题.(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,∴,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:∵客商购进A型商品m件,∴客商购进B型商品件,由题意:,∵A型商品的件数不大于B型的件数,且不小于80件,∵,∴;(3)解:设收益为元,则,①当时,即时,w随m的增大而增大,∴当时,最大收益为元;②当,即时,最大收益为17500元;③当时,即时,w随m的增大而减小,∴时,最大收益为元,∴当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元.【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键.5、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.【详解】(1)轴于点,轴于点,,,,,,;(2) 如图2,过点作轴,交于点,,,轴,,,,,,,, 在与中,,,,即点为中点;(3) 如图3,延长到,使,连接,,延长交于点,,,,,,,,,,,,,,,,,,,,,,即.【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共25页。试卷主要包含了已知一次函数y=ax+b,已知点A等内容,欢迎下载使用。
这是一份数学八年级下册第十四章 一次函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,过点A,已知点A,一次函数y=mx﹣n等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共29页。试卷主要包含了已知点,已知一次函数y=等内容,欢迎下载使用。