北京课改版八年级下册第十四章 一次函数综合与测试精练
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试精练,共25页。试卷主要包含了点P的坐标为等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各图中,不能表示y是x的函数的是( )A. B.C. D.2、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )A.k=0 B.k=1 C.k=2 D.k=33、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向4、已知为第四象限内的点,则一次函数的图象大致是( )A. B.C. D.5、点P的坐标为(﹣3,2),则点P位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个7、8、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x10、如图,直线l是一次函数的图象,下列说法中,错误的是( )A.,B.若点(-1,)和点(2,)是直线l上的点,则C.若点(2,0)在直线l上,则关于x的方程的解为D.将直线l向下平移b个单位长度后,所得直线的解析式为第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)2、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.3、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.4、某长途汽车客运公司规定旅客可免费携带一定质量的行李.当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:…304050…(元)…468…则旅客最多可免费携带行李的质量是______kg.5、已知函数,如果函数值,那么相应的自变量的取值范围是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.(1)请直接写出C、D两点的坐标:点C ,点D ;(2)当BF=BC时,连接FE.①求点F的坐标;②求此时△BEF的面积.2、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元. 普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?3、阅读下列一段文字,然后回答问题.已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.4、如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.5、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:A商场:买一盒大气球,送一盒小气球;B商场:一律九折优惠;(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算? -参考答案-一、单选题1、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.2、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解.【详解】∵当x1<x2时,y1>y2∴一次函数y=(k)x+2的y随x的增大而减小∴∴∴k的值可能是0故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.3、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.4、A【解析】【分析】根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.【详解】解:∵为第四象限内的点,∴ ,∴ ,∴一次函数的图象经过第一、二、三象限.故选:A【点睛】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.5、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.6、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.7、C【解析】【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.8、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.10、B【解析】【分析】根据一次函数图象的性质和平移的规律逐项分析即可.【详解】解:A.由图象可知,,,故正确,不符合题意;B. ∵-1<2,y随x的增大而减小,∴,故错误,符合题意;C. ∵点(2,0)在直线l上,∴y=0时,x=2,∴关于x的方程的解为,故正确,不符合题意;D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;故选B.【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键.二、填空题1、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.2、-3【解析】【分析】点P在y轴上则该点横坐标为0,可解得m的值.【详解】解:在y轴上,∴m+3=0,解得m=-3.故答案为:-3.【点睛】本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、1760【解析】【分析】根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.【详解】解:小明离家2分钟走了160米,∴小明初始速度为160÷2=80米/分;小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;小明在家换衣服3分钟时间,妈妈走了40×3=120米,设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,则有160t=1200+120+40t,∴t=11,∴小明离家距离为11×160=1760米.故答案为:1760米.【点睛】本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.4、10【解析】【分析】利用待定系数法求一次函数解析式,令y=0时求出x的值即可.【详解】解:∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:,∴函数表达式为y=0.2x-2,当y=0时,0=0.2x-2,解得x=10,∴旅客最多可免费携带行李的质量是10kg,故答案为:10.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.5、x>4【解析】【分析】根据题意,先求出当时,自变量的值,然后根据一次函数的增减性求解即可.【详解】解:当时,,解得,∵一次函数解析式为,,∴y随x增大而增大,∴当时,,故答案为:.【点睛】本题考查了一次函数的增减性和求自变量的值,熟知一次函数增减性是解题的关键.三、解答题1、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.【解析】【分析】(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.【详解】解:(1)∵B(0 ,3),∴OB=3,∵OB=CD,且OD=2OC,∴OC=1,OD=2,∴C(-1 ,0),D(2 ,0);故答案为:(-1 ,0),(2 ,0);(2)①过点F作FP⊥轴于点P,∵∠PBF=∠BCO,BF=BC,又∠FPB=∠BOC=90°,∴△FPB≌△BOC(AAS),∴FP=BO=3,PB= OC=1,∴PO=4,∴F(-3 ,4);②过点F作FQ⊥BE于点Q,∵∠CBO+∠BCO=90°,∠PBF=∠BCO,∴∠CBO+∠PBF=90°,则∠CBF=90°,由折叠的性质得:∠EBC=∠OBC,EB=BO=3,∴∠EBC +∠EBF=90°,∴∠EBF=∠PBF,即FB是∠PBE的角平分线,又FQ⊥BE,FP⊥轴,∴FQ= FP=3,∴△BEF的面积为BEFQ=.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.2、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元【解析】【分析】①分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;②根据收费列出表达式整理即可;③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.【详解】解:(1)设租住三人间m间,双人间n间,根据题意,解得,∴三人间8间,双人间13间;(2)双人间住了(50﹣x)人,根据题意y=[50x+70(50﹣x)]×50%即y=﹣10x+1750(0≤x<50,且x为整数);(3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元.【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.3、(1)5;(2)能,理由见解析;(3),【解析】【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.【详解】(1)∵A、B两点在平行于y轴的直线上∴AB=即A、B两点间的距离为5(2)能判定△DEF的形状由两点间距离公式得:,,∵DE=DF∴△DEF是等腰三角形(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小由对称性知:点G的坐标为,且PG=PF∴PD+PF=PD+PG≥DG即PD+PF的最小值为线段DG的长设直线DG的解析式为,把D、G的坐标分别代入得:解得:即直线DG的解析式为上式中令y=0,即,解得即点P的坐标为由两点间距离得:DG=所以PD+PF的最小值为 【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.4、(1)点A、B的坐标分别为(6,0),(0,3),点C(2,2);△COB的面积=3;(2)P(4,1);(3)点Q的坐标为(0,)或(0,)或(0,)【解析】【分析】(1)点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3得:点C(2,2);△COB的面积=,即可求解;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,即可求解;(3)分∠MQN=90°、∠QNM=90°、∠NMQ=90°三种情况,分别求解即可.【详解】解:(1)直线l2的解析式为y=-x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=-x+3并解得:x=2,故点C(2,2);△COB的面积==×3×2=3;(2)设点P(m,-m+3),S△COP=S△COB,则BC=PC,则(m-2)2+(-m+3-2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3-m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3-m-n,n-m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3-m-m=m,解得:m=,n==3-;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.5、(1)A:,B:;(2)A商场更合算【解析】【分析】(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;(2)先求A、B两商场花费函数的值,比较大小即可.【详解】解:(1)A:,B:; (2)当时,A:元,B:元,∵,∴选择在A商场购买比较合算.【点睛】本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共20页。试卷主要包含了点在等内容,欢迎下载使用。
这是一份八年级下册第十四章 一次函数综合与测试课后复习题,共23页。试卷主要包含了下列命题中,真命题是,点在第四象限,则点在第几象限等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后作业题,共24页。试卷主要包含了若直线y=kx+b经过第一,已知点A等内容,欢迎下载使用。