搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析京改版八年级数学下册第十四章一次函数同步练习试题(含解析)

    2022年精品解析京改版八年级数学下册第十四章一次函数同步练习试题(含解析)第1页
    2022年精品解析京改版八年级数学下册第十四章一次函数同步练习试题(含解析)第2页
    2022年精品解析京改版八年级数学下册第十四章一次函数同步练习试题(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十四章 一次函数综合与测试复习练习题

    展开

    这是一份初中数学第十四章 一次函数综合与测试复习练习题,共26页。试卷主要包含了若一次函数y=kx+b,点P在第二象限内,P点到x等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数的图象经过点,则下列结论正确的是(       A.图像经过一、二、三象限 B.关于方程的解是C. D.的增大而减小2、若直线ykx+b经过第一、二、三象限,则函数ybxk的大致图象是(  )A. B. C. D.3、点A(-3,1)到y轴的距离是(  )个单位长度.A.-3 B.1 C.-1 D.34、若一次函数ykx+bkb为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为(  )A.x<0 B.x>0 C.x>1 D.x<15、点P在第二象限内,P点到xy轴的距离分别是4、3,则点P的坐标为(  )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)6、若点A(x1y1)和B(x2y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是(       A.k=0 B.k=1 C.k=2 D.k=37、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点(       A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)8、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)9、如图,已知直线ykx+bymx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为(       A. B. C. D.无法确定10、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为(  )A.2 B.-1 C.-2 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200剩余油量Q(升)4035302520则该汽车每行驶100千米的耗油量为 _____升.2、(1)每一个含有未知数xy的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(xy)都是这个二元一次方程的解.(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.3、写一个y关于x的函数,同时满足两个条件:(1)图象经过点(-3,2);(2) yx的增大而增大.这个函数表达式可以为_____________________________.(写出一个即可)4、如图所示,公园的位置是_______,车站的位置是_______,学校的位置是_______.5、如图,已知函数的图象交于点,则根据图象可得,二元一次方程组的解是_______.三、解答题(5小题,每小题10分,共计50分)1、一次函数的图像过两点.(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x           时,y>0;当x           时,y<0;当时,y的取值范围是           2、如图,在平面直角坐标系中,一次函数 图象经过点A(1,4),点B是一次函数的图象与正比例函数    的图象的交点.(1)求k的值和直线与x轴、y轴的交点CD的坐标;(2)求点B的坐标;(3)求△AOB的面积.3、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元. 普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了          人,一天一共花去住宿费用y元表示,写出yx的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?4、某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______;(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?5、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DEAB于点E,交x轴于点F(1)求点D的坐标和AB的长;       (2)若△BDE≌△AFE,求点E的坐标;       (3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标. -参考答案-一、单选题1、A【解析】【分析】根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,,即可知的增大而增大,进而判断D选项【详解】A. 图像经过一、二、三象限,故该选项正确,符合题意;B. 关于方程的解不一定是,不正确,不符合题意C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;D. 图象经过一、二、三象限,的增大而增大,故该选项不正确,不符合题意;故选A【点睛】本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键.2、D【解析】【分析】直线ykx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.【详解】解:直线ykx+b经过第一、二、三象限,则时,函数ybxk的图象经过第一、三、四象限,故选:D.【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.3、D【解析】【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知轴的距离为轴的距离是个单位长度故选D.【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点轴的距离=;到轴的距离=4、D【解析】【分析】利用函数的增减性和x=1时的函数图像上点的位置来判断即可.【详解】解:如图所示:k>0,函数y= kx+bx的增大而增大,直线过点B(1,1),∵当x=1时,kx+b=1,即kx+b-1=0,∴不等式kx+b﹣1<0的解集为:x<1.故选择:D.【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.5、C【解析】【分析】Pxy轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】P点到xy轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到xy轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.6、A【解析】【分析】利用一次函数yx的增大而减小,可得,即可求解.【详解】∵当x1<x2时,y1>y2∴一次函数y=(k)x+2的yx的增大而减小k的值可能是0故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出7、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,动点2021次运动时向右个单位,此时坐标为故选:B【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.8、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.9、A【解析】【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线ykx+bymx+n交于点A(﹣2,3),∴方程组的解为故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.10、C【解析】【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.【详解】解:由题意得:x=1时,y=k+3,∵在x=1处,自变量增加2,函数值相应减少4,x=3时,函数值是k+3-4,∴3k+3=k+3-4,解得:k=-2,故选C.【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.二、填空题1、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可.【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10.【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.2、     y=kx+b(kb是常数,k≠0)     直线     自变量     多少     交点坐标【解析】【分析】(1)根据一次函数与二元一次方程的关系解答即可;(2)根据一次函数与二元一次方程组的关系解答即可;【详解】(1)一般地,任何一个二元一次方程都可转化为一次函数的形式,∴每个二元一次方程都对应一个一次函数,也对应一条直线,故答案为:y=kx+b(kb是常数,k≠0);直线(2)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.∴答案为:自变量;多少;交点坐标【点睛】此题考查一次函数与二元一次方程问题,关键是根据一次函数与二元一次方程(组)的关系解答.3、(答案不唯一)【解析】【分析】y关于x的一次函数,设,把代入求出,得出函数表达式即可.【详解】y关于x的一次函数,yx的增大而增大,y关于x的一次函数为代入得:这个函数表达式可以为故答案为:(答案不唯一).【点睛】本题考查一次函数的性质,掌握一次函数的相关性质是解题的关键.4、     (4,4);     (-2,-3);     (4,-2)【解析】【分析】用点坐标表示位置.【详解】①在直角坐标系中查横坐标为,纵坐标为;得到公园的位置为故答案为:②在直角坐标系中查横坐标为,纵坐标为;得到车站的位置为故答案为:③在直角坐标系中查横坐标为,纵坐标为;得到学校的位置为故答案为:【点睛】本题考察了坐标系中点的坐标.解题的关键在于正确的找出横、纵坐标的值.5、【解析】【分析】根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.【详解】解:由图像可知二元一次方程组的解是故答案为:【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.三、解答题1、(1);(2)见解析;(3)【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可.【详解】解:(1)设经过AB两点的直线解析式为y=kx+b两点坐标代入,得 解得, ∴直线的解析式为(2)当x=0时,y=4,当y=0时,x=2,∴直线经过(0,4),(2,0),画图象如图所示,(3)根据图象可得:时,;当时,;当时, 故答案为:【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.2、(1)C(5, 0 ), D(O,5 );(2)B点坐标是(3,2);(3)5【解析】【分析】(1)直接把A点坐标代入y=kx+5可求出k的值,再求直线与x轴、y轴的交点CD的坐标即可;(2)根据两直线相交的问题,通过解方程组可得到B点坐标;(3)先求出直线AB与x轴的交点C的坐标,然后利用SAOB=SAOC-SBOC进行计算.【详解】解:(1)把A(1,4)代入y=kx+5得k+5=4,解得k=-1;则一次函数解析式为y=-x+5,令x=0,则y=5;令y=0,则x=5;∴点C的坐标为(5,0),点D的坐标为(0,5);(2)解方程组,得所以点B坐标为(3,2);(3)∵点C的坐标为(5,0),点A的坐标为(1,4),点B坐标为(3,2),∴SAOB=SAOC-SBOC=×5×4-×5×2=5.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.3、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是yx的增大而减小,所以最小值是x=48时费用1270元【解析】【分析】①分别设三人间和双人间为mn,根据人数和钱数列方程组求解;②根据收费列出表达式整理即可;③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.【详解】解:(1)设租住三人间m间,双人间n间,根据题意解得∴三人间8间,双人间13间;(2)双人间住了(50﹣x)人,根据题意y=[50x+70(50﹣x)]×50%y=﹣10x+1750(0≤x<50,且x为整数);(3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是yx的增大而减小,所以最小值是x=48时费用1270元.【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.4、(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.【解析】【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数图象的解析式k是常数,b是常数,),将两个点代入求解即可得函数的解析式;(3)将代入(2)函数解析式即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;(2)设函数图象的解析式k是常数,b是常数,),图象过点可得:解得函数图象的解析式:(3)当时,答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元.【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.5、(1)(-4,4),AB= ;(2)(-1,2);(3)( )、(-6, )、(14,-8)、(2,0)【解析】【分析】(1)分别令一次函数解析式中的x=0、y=0,求出yx,据此可得点AB的坐标,求出AB的值,由正方形的性质可得点D的坐标; (2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标; (3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点QDF的延长线上,∠APQ=90°时,过点QQMBD于点M,过点AHABD于点H,易证APH≌△PMQBH=2=AO,利用全等三角形的性质可证得QM=HPAH=PM=4,利用函数解析式表示出点Qa),可表示出MQPH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点QFD的延长线上时,∠QPA=90°,过点QQHBD于点H,过点PPMx轴于点M,设点Qa),易证PHQ≌△APM,利用全等三角形的性质分别表示出BHOM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.【详解】解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点Bx=0,y=4;y=0,x=-2∴点AB的坐标分别为:(-2,0)、(0,4),OA=2,OB=4由勾股定理得,AB=∵四边形BOCD是正方形BD=OB=CD=OC=4,D的坐标为(-4,4)(2)解:∵△BDE≌△AFEAF=BD=4,OF=2F(2,0),设直线DF的解析式为 D(-4,4),F(2,0)代入得, 解得, ∴直线DF的解析式为 联立方程组 解得, ∴点E的坐标为(-1,2)(3)如图, 当点P在线段BD上时∵点A(-2,0),点F(2,0) AF=2-(-2)=4, 当点Q与点F重合时,DABD于点P DA=AF=4,∠DAF=90°, ∴点Q(2,0); 如图,当点QDF的延长线上,∠APQ=90°时,过点QQMBD于点M,过点AHABD于点H 易证△APH≌△PMQBH=2=AO QM=HPAH=PM=4, 设点Qa   解之:a=14 ∴当a=14时,y==-8, ∴点Q(14,-8); 如图,当点QFD的延长线上时,∠QAP=90°,过点QQHx轴于点H,过点PPMx轴于点M 易证△AQH≌△APM QH=AMPM=AH=4, OA=2, OH=4+2=6, ∴点P的横坐标为-6 x=-6时y ∴点Q如图,当点QFD的延长线上时,∠QPA=90°,过点QQHBD于点H,过点PPMx轴于点M 设点Qa 易证△PHQ≌△APM PM=PH=4,AM=QH BH=-aOM=-a-4, AM=QH=2-(-a-4)=a+6,QH=  解之:  ∴点Q ∴点Q的坐标为:或(14,-8)或(2,0).【点睛】本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识. 

    相关试卷

    2020-2021学年第十四章 一次函数综合与测试达标测试:

    这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后测评:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共24页。试卷主要包含了,两地相距80km,甲等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试一课一练:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map