终身会员
搜索
    上传资料 赚现金
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评练习题(无超纲)
    立即下载
    加入资料篮
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评练习题(无超纲)01
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评练习题(无超纲)02
    2022年精品解析京改版八年级数学下册第十四章一次函数综合测评练习题(无超纲)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试一课一练

    展开
    这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共27页。试卷主要包含了点在,一次函数y=mx﹣n等内容,欢迎下载使用。

    京改版八年级数学下册第十四章一次函数综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知点A(x+2,x﹣3)在y轴上,则x的值为(  )
    A.﹣2 B.3 C.0 D.﹣3
    2、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )

    A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
    3、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    4、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )

    A. B. C. D.
    5、点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是(  )
    A. B. C. D.
    7、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )

    A.x≥2 B.x≤2 C.x≥3 D.x≤3
    8、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )

    A.y<0 B.y>0 C.y<3 D.y>3
    9、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )

    A.①②③ B.①②④ C.③④ D.①③④
    10、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.
    2、(1)一次函数y=kx+b(k≠0)的图象经过点(0,b).当k>0时,y的值随着x值的增大而____;当k<0时,y的值随着x值的增大而_____.
    (2)形如_____(k是常数,k____0)的函数,叫做正比例函数,其中比例系数是_____.
    3、在函数的图象上有,,三个点,则,,的大小关系是_____________.(用“>”连接)
    4、直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是______.
    5、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:
    华氏温度(℉)
    50
    68
    86
    104
    ……
    212
    摄氏温度(℃)
    10
    20
    30
    40
    ……
    m
    (1)m=______;
    (2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.
    三、解答题(5小题,每小题10分,共计50分)
    1、五和超市购进、两种饮料共200箱,两种饮料的成本与销售价如下表:
    饮料
    成本(元/箱)
    销售价(元/箱)

    25
    35

    35
    50
    (1)若该超市花了6500元进货,求购进、两种饮料各多少箱?
    (2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,求与的函数关系式,并求购进种饮料多少箱时,可获得最大利润,最大利润是多少?
    2、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.

    3、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.
    (1)求购买一个型篮球、一个型篮球各需多少元?
    (2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;
    (3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?
    4、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,

    (1)求点D的坐标和AB的长;
    (2)若△BDE≌△AFE,求点E的坐标;
    (3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
    5、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.
    (1)请直接写出C、D两点的坐标:点C ,点D ;
    (2)当BF=BC时,连接FE.
    ①求点F的坐标;
    ②求此时△BEF的面积.


    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据y轴上点的横坐标为0列方程求解即可.
    【详解】
    解:∵点A(x+2,x﹣3)在y轴上,
    ∴x+2=0,
    解得x=-2.
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    2、B
    【解析】
    【分析】
    观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
    【详解】
    解:点的运动规律是每运动四次向右平移四个单位,

    动点第2021次运动时向右个单位,
    点此时坐标为,
    故选:B.
    【点睛】
    本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
    3、B
    【解析】
    【分析】
    由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
    【详解】
    解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
    乙车行驶280千米需要的时间为:小时,
    所以甲车返回的速度为:千米/时,故②符合题意;
    由小时,所以 故③符合题意,
    当乙车行驶2小时时,行驶的路程为:千米,
    此时甲车行驶1小时,千米,
    所以两车相距:千米,
    当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
    此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
    距离A地千米,所以两车相距千米,故④不符合题意;
    综上:故选B
    【点睛】
    本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
    4、A
    【解析】
    【分析】
    由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
    【详解】
    解:过点P作PM⊥OD于点M,


    ∵长方形的顶点的坐标分别为,点是的中点,
    ∴点D(5,0)
    ∵,PM⊥OD,
    ∴OM=DM
    即点M(2.5,0)
    ∴点P(2.5,4),
    故选:A
    【点睛】
    此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
    5、C
    【解析】
    【分析】
    根据各象限内点的坐标特征解答.
    【详解】
    解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
    6、C
    【解析】
    【分析】
    由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
    【详解】
    解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
    ∴k<0,
    ∴-k>0,
    ∴一次函数y=kx-k的图象经过一、二、四象限;
    故选:C.
    【点睛】
    本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
    7、D
    【解析】
    【分析】
    观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
    【详解】
    由图象知:不等式的解集为x≤3
    故选:D
    【点睛】
    本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
    8、A
    【解析】
    【分析】
    观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
    【详解】
    ∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
    ∴y随x的增大而减小,
    ∴当x>2时,y<0.
    故选:A.
    【点睛】
    本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为

    9、D
    【解析】
    【分析】
    根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
    【详解】
    解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
    火车的长度是150米,故②错误;
    整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
    隧道长是:45×30-150=1200(米),故④正确.
    故选:D.
    【点睛】
    本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
    10、D
    【解析】
    【分析】
    根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
    【详解】
    解:过点A作AD′⊥BC于点D′,如图,

    由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
    而△ABC的面积不变,又S=AD,即y是由小变大再变小,
    结合选项可知,D选项是正确的;
    故选:D.
    【点睛】
    本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
    二、填空题
    1、﹣2
    【解析】
    【分析】
    由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.
    【详解】
    解:如图,

    由,可知当,不论k取何值,,
    即直线y=kx﹣2k+1恒过,
    又因为点O为坐标原点,点A(4,2),可知为OA中点,
    可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,
    所以代入点B(0,5)可得:,解得:.
    故答案为:.
    【点睛】
    本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.
    2、 增大 减小 y=kx ≠ k
    【解析】
    【分析】
    (1)根据一次函数的性质填写即可;
    (2)根据正比例函数得概念填写即可.
    【详解】
    解:(1)∵函数为一次函数 ,
    ∴当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小;
    (2)由正比例函数概念可知:
    把形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中比例系数是k.
    故答案为:①增大 ② 减小 ③y=kx ④≠ ⑤k.
    【点睛】
    本题考查了正比例概念和一次函数的性质,做题的关键是牢记正比例和一次函数的概念准确填写.
    3、
    【解析】
    【分析】
    根据一次函数图象的增减性来比较、、三点的纵坐标的大小.
    【详解】
    解:一次函数解析式中的,
    该函数图象上的点的值随的增大而减小.
    又,

    故答案为:.
    【点睛】
    本题考查了一次函数图象上点坐标特征,一次函数的增减性,解题的关键是掌握一次函数的增减性,即在中,当时随的而增大,当时,随的增大而减小.
    4、y=-x-2
    【解析】
    【分析】
    根据平移的性质“左加右减,上加下减”,即可求出平移后的直线解析式.
    【详解】
    解:直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是y=-x+3-5=y=-x-2.
    故答案为:y=-x-2.
    【点睛】
    本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.
    5、 100 a=32+1.8b
    【解析】
    【分析】
    (1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;
    (2)由表格数据规律,得到华氏温度=摄氏温度+32,据此解题.
    【详解】
    解:(1)设华氏温度与摄氏温度满足的一次函数关系为:
    代入(10,50)(20,68)得



    当时,


    故答案为:100;
    (2)由(1)得,华氏温度=摄氏温度+32,
    若华氏温度为a,摄氏温度为b,
    则把摄氏温度转化为华氏温度的公式为:a= +32,
    故答案为:a=32+1.8b.
    【点睛】
    本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.
    三、解答题
    1、(1)购进A种饮料50箱,则购进B种饮料150箱;(2)求购进种饮料50箱时,可获得最大利润,最大利润是2750元
    【解析】
    【分析】
    (1)设购进A种饮料箱,则购进B种饮料箱,根据两种饮料的成本乘以数量等于6500元,列出二元一次方程即可解决问题;
    (2)根据利润等于销售价减去成本再乘以销量,列出与的函数关系式,进而根据一次函数的性质求得最大值
    【详解】
    (1)设购进A种饮料箱,则购进B种饮料箱,根据题意得
    25x+35y=6500x+y=200
    解得x=50y=150
    答:购进A种饮料50箱,则购进B种饮料150箱
    (2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,
    则w=35-25a+50-35200-a
    =3000-5a
    -5<0
    随的增大而减小,

    ∴a=50时,可获得最大利润,最大利润是3000-250=2750(元)
    【点睛】
    本题考查了二元一次方程组的应用,一次函数的应用,根据题意列出关系式和方程组是解题的关键.
    2、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
    【解析】
    【分析】
    先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
    【详解】
    解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:

    故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
    【点睛】
    本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
    3、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:W=30t+15000(0≤t≤300);(3)A型篮球120个,则B型篮球为180个.
    【解析】
    【分析】
    (1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;
    (2)A型篮球t个,则B型篮球为(300-t)个,根据单价、数量、总价的关系即可得;
    (3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.
    【详解】
    解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:
    3x+2y=3402x+y=210,
    解得:x=80y=50,
    ∴一个A型篮球为80元,一个B型篮球为50元;
    (2)A型篮球t个,则B型篮球为(300-t)个,根据题意可得:
    W=80t+50300-t=30t+15000(0≤t≤300),
    ∴函数解析式为:W=30t+15000(0≤t≤300);
    (3)根据题意可得:A型篮球单价为(80-8)元,B型篮球单价为50×0.9元,则
    16740=(80-8)t+50×0.9×300-t,
    解得:t=120,300-t=180,
    ∴A型篮球120个,则B型篮球为180个.
    【点睛】
    题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.
    4、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)
    【解析】
    【分析】
    (1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标;
    (2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标;
    (3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,易证△APH≌△PMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,设点Q(a,),易证△PHQ≌△APM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.
    【详解】
    解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,
    令x=0,y=4;y=0,x=-2
    ∴点A、B的坐标分别为:(-2,0)、(0,4),
    ∴OA=2,OB=4
    由勾股定理得,AB= ,
    ∵四边形BOCD是正方形
    ∴BD=OB=CD=OC=4,
    ∴D的坐标为(-4,4)
    (2)解:∵△BDE≌△AFE,
    ∴AF=BD=4,
    ∴OF=2
    ∴F(2,0),
    设直线DF的解析式为
    把D(-4,4),F(2,0)代入得,
    解得,
    ∴直线DF的解析式为
    联立方程组
    解得,
    ∴点E的坐标为(-1,2)
    (3)如图,

    当点P在线段BD上时
    ∵点A(-2,0),点F(2,0)
    ∴AF=2-(-2)=4,
    当点Q与点F重合时,DA⊥BD于点P,
    ∴DA=AF=4,∠DAF=90°,
    ∴点Q(2,0);
    如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,

    易证△APH≌△PMQ,BH=2=AO
    ∴QM=HP,AH=PM=4,
    设点Q(a,)
    ∴;

    解之:a=14
    ∴当a=14时,y==-8,
    ∴点Q(14,-8);
    如图,当点Q在FD的延长线上时,∠QAP=90°,过点Q作QH⊥x轴于点H,过点P作PM⊥x轴于点M,

    易证△AQH≌△APM,
    ∴QH=AM,PM=AH=4,
    ∵OA=2,
    ∴OH=4+2=6,
    ∴点P的横坐标为-6
    当x=-6时y,
    ∴点Q;
    如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,

    设点Q(a,)
    易证△PHQ≌△APM,
    ∴PM=PH=4,AM=QH,
    ∴BH=-a,OM=-a-4,
    ∴AM=QH=2-(-a-4)=a+6,QH=

    解之:

    ∴点Q
    ∴点Q的坐标为:或或(14,-8)或(2,0).
    【点睛】
    本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识.
    5、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.
    【解析】
    【分析】
    (1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;
    (2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;
    ②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.
    【详解】
    解:(1)∵B(0 ,3),
    ∴OB=3,
    ∵OB=CD,且OD=2OC,
    ∴OC=1,OD=2,
    ∴C(-1 ,0),D(2 ,0);
    故答案为:(-1 ,0),(2 ,0);
    (2)①过点F作FP⊥轴于点P,

    ∵∠PBF=∠BCO,BF=BC,
    又∠FPB=∠BOC=90°,
    ∴△FPB≌△BOC(AAS),
    ∴FP=BO=3,PB= OC=1,
    ∴PO=4,
    ∴F(-3 ,4);
    ②过点F作FQ⊥BE于点Q,
    ∵∠CBO+∠BCO=90°,∠PBF=∠BCO,
    ∴∠CBO+∠PBF=90°,则∠CBF=90°,
    由折叠的性质得:∠EBC=∠OBC,EB=BO=3,
    ∴∠EBC +∠EBF=90°,
    ∴∠EBF=∠PBF,即FB是∠PBE的角平分线,
    又FQ⊥BE,FP⊥轴,
    ∴FQ= FP=3,
    ∴△BEF的面积为BEFQ=.
    【点睛】
    本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.

    相关试卷

    2020-2021学年第十四章 一次函数综合与测试课后测评: 这是一份2020-2021学年第十四章 一次函数综合与测试课后测评,共22页。

    数学第十四章 一次函数综合与测试同步达标检测题: 这是一份数学第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。

    初中第十四章 一次函数综合与测试达标测试: 这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map