![2022年强化训练京改版八年级数学下册第十七章方差与频数分布综合测试练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12704306/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练京改版八年级数学下册第十七章方差与频数分布综合测试练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12704306/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练京改版八年级数学下册第十七章方差与频数分布综合测试练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12704306/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学八年级下册第十七章 方差与频数分布综合与测试课时作业
展开
这是一份数学八年级下册第十七章 方差与频数分布综合与测试课时作业,共22页。
京改版八年级数学下册第十七章方差与频数分布综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为( )A.50件 B.500件 C.5000件 D.50000件2、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )序号12345678910质量(千克)44515747485049534952A.500千克,7500元 B.490千克,7350元C.5000千克,75000元 D.4850千克,72750元3、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差甲6.20.25乙6.00.58丙5.80.12丁6.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A.甲 B.乙 C.丙 D.丁4、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ).A.4 B.5 C.6 D.75、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ).A.100,55% B.100,80% C.75,55% D.75,80%6、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.众数7、用计算器计算方差时,要首先进入统计计算状态,需要按键( )A. B.C. D.8、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( ) 平均成绩(分)95989698方差3322A. B. C. D.9、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.410、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )A.20头 B.50头 C.140头 D.200头第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是,,那么两人中射击成绩比较稳定的是_________.2、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.3、一组数据的平均数是4,则这组数据的方差是_________.4、一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.5、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为,,,则小麦长势比较整齐的试验田是__________.三、解答题(5小题,每小题10分,共计50分)1、2021年12月2日是第十个“全国交通安全日”公安部、中央网信办、中央文明办、教育部、司法部、交通运输部、应急管理部、共青团中央联合发出通知,决定自2021年11月18日起至年底,以“守法规知礼让、安全文明出行”为主题,共同组织开展第十个“全国交通安全日”群众性主题活动.某中学团委组织开展交通安全知识竞赛现从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理和分析(成绩均为整数,成绩得分用x表示),共分成五个等级:A.,B.,C.,D.,E.(其中成绩大于等于90的为优秀),下面给出了部分信息.七年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,89.八年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,85,89.七、八年级抽取的学生竞赛成绩统计表 平均数中位数众数满分率七年级81.4a85八年级83.385b根据以上信息,解答下列问题:(1)请补全条形统计图,并直接写出a、b的值;(2)根据以上数据分析,你认为哪个年级的竞赛成绩更好,并说明理由(写出一条理由即可);(3)已知该校七、八年级共有1200名学生参与了知识竞赛,请估计两个年级竞赛成绩优秀的学生人数是多少?2、表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是_______分;中位数是_______分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).3、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图.请你结合图中信息解答下列问题:(1)该校共调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生,估计对“卓越”最感兴趣的学生有多少人?4、某校了解学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了________名学生;(2)补全条形统计图;(3)若该校共有1800名,估计爱好运动的学生有________人.5、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程.为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98.活动后被抽取学生竞赛成绩频数分布表成绩x(分)频数(人)75≤x<80180≤x<85385≤x<90790≤x<95m95≤x<100n请你根据以上信息解决下列问题:(1)本次调查的样本容量是 ,表中m= ; n= ;(2)若想直观地反映出活动前后被抽取学生竞赛成绩的变化情况,应该把数据整理,绘制成 统计图;(填“扇形”“条形”或“折线”)(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人? -参考答案-一、单选题1、C【分析】抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数.【详解】解:∵某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为5÷100=5%,∴估计该厂这10万件产品中不合格品约为10×5%=0.5万件,故选C.【点睛】此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率.2、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.3、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵,∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.4、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,
又∵组距为4,
∵20÷4=5,
∴应该分成5+1=6组.
故选:C.【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.5、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,∴第五小组的频率是,∴此次统计的样本容量是.∵合格成绩为20,∴本次测试的合格率是.故选B.【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.6、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.7、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.8、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键9、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,
故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.10、B【分析】在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.【详解】依题意,质量在82.5kg及以上的生猪有:(头)故选B.【点睛】本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.二、填空题1、小刘【分析】根据方差的意义即可求出答案.【详解】解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,
∴两人中射击成绩比较稳定的是小刘,
故答案为:小刘【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.2、15【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.【详解】解:设盒子中白球大约有个,根据题意,得:,解得,经检验是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.3、【分析】先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x的平均数是4,
可得:,
解得:x=3,
方差为:=,故答案为:.【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.4、7【分析】根据平均数和方差的计算公式即可得.【详解】解:设数据的平均数为,则的平均数为,数据的方差是7,,,即的方差是7,故答案为:7.【点睛】本题考查了求方差,熟记公式是解题关键.5、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】解:∵,,∴,∵3.8<4,∴S乙2<S甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.三、解答题1、(1),,统计图见解析;(2)八年级的成绩比七年级的成绩好,理由见解析;(3)估计两个年级竞赛成绩优秀的学生人数是330人.【分析】(1)根据中位数的定义即可得到七年级的中位数是第10名和第11名的成绩,然后确定中位数在D等级里面即可得到答案;由八年级统计图可知,八年级C等级人数=20-7-6-2-1=4人,由八年级的满分率为15%,得到八年级满分人数=20×15%=3人,即可确定八年级这20名学生成绩出现次数最多的是85,由此求解即可;(2)七、八年级,众数与优秀率相同,可从平均数与中位数进行阐述;(3)先算出样本中两个年级的优秀率,然后估计总体即可.【详解】解:(1)∵七年级一共有20人,∴七年级的中位数是第10名和第11名的成绩,∵七年级A等级人数=人,七年级B等级人数=人,七年级C等级人数=人,∴七年级的中位数在D等级里面,即为,∴;由八年级统计图可知,八年级C等级人数=20-7-6-2-1=4人,∵八年级的满分率为15%,∴八年级满分人数=20×15%=3人,∴可知八年级这20名学生成绩出现次数最多的是85,即众数为85,∴,补全统计图如下:
(2)∵七、八年级的众数,优秀率都相同,但是八年级的平均数大于七年级的平均数,八年级的中位数也大于七年级的中位数,∴八年级的成绩比七年级的成绩好;(3)由题意得:两个年级竞赛成绩优秀的学生人数人,答:估计两个年级竞赛成绩优秀的学生人数是330人.【点睛】本题主要考查了中位数与众数,统计图,用样本估计总体,解题的关键在于能够熟练掌握相关知识进行求解.2、(1)90,90;(2)小明平时成绩的方差;(3)小明本学期的综合成绩是93.5分.解题过程见解析.【分析】(1)根据众数和中位线的概念求解即可;(2)先求出平时成绩的平均数,然后根据方差的计算公式代入求解即可;(3)根据加权平均数的计算方法求解即可.【详解】解:(1)由表格可知,出现次数最多的90,∴小明6次成绩的众数是90分;把这6次成绩按从小到大排列为:86,88,90,90,92,96,∴中间两个数为90,90,∴中位数为:,故答案为:90,90;(2)平均分,小明平时成绩的方差;(3),∴小明本学期的综合成绩是93.5分.【点睛】此题考查了平均数,中位数,众数,方差的计算等知识,解题的关键是熟练掌握平均数,中位数,众数,方差的计算方法.3、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;
(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;
(3)用最感兴趣为“卓越”所占百分比乘以2000即可.【详解】解:(1)150÷30%=500(名),∴该校共调查了500名学生;(2)最感兴趣为“尚德”的人数=500−150−50−125−75=100(名),
补全图形如图:
(3)∵最感兴趣为“卓越”所占百分比=×100%=15%,∴2000×15%=300(名)
所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名.【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.4、(1)100;(2)见解析;(3)720【分析】(1)根据爱好娱乐人数的百分比,以及娱乐人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数、运动人数、以及上网的人数,从而可补全图形.(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好娱乐的人数为15,所占百分比为15%,∴共调查人数为:15÷15%=100.故填:100.(2)爱好上网人数为:100×10%=10,爱好运动人数为:100×40%=40,爱好阅读人数为:100-15-10-40=35,补全条形统计图,如图所示:(3)爱好运动的学生人数所占的百分比为40%,则:该校共有学生大约有:1800×40%=720人;所以,若该校共有1800名,估计爱好运动的学生有720人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,会从图标中获取有用信息.5、(1)25,6,8(2)折线(3)1120人【分析】(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值.(2)折线统计图可以反映数据变化.(3)等级的频率为,进而估计名同学成绩为等级的学生人数.(1)解:由题意可知样本容量为25, m=6, n=8故答案为:25,6,8.(2)解:折线统计图可以反映数据变化故答案为:折线.(3)解:∵等级的频率为∴∴该校2000名同学中活动后的竞赛成绩为等级的学生有人.【点睛】本题考查了数据统计.解题的关键在于正确查取各成绩区间学生个数.
相关试卷
这是一份数学北京课改版第十七章 方差与频数分布综合与测试当堂达标检测题,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了在这学期的六次体育测试中,甲等内容,欢迎下载使用。
这是一份2021学年第十七章 方差与频数分布综合与测试课后测评,共23页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)