年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十七章方差与频数分布难点解析练习题(名师精选)

    精品试卷京改版八年级数学下册第十七章方差与频数分布难点解析练习题(名师精选)第1页
    精品试卷京改版八年级数学下册第十七章方差与频数分布难点解析练习题(名师精选)第2页
    精品试卷京改版八年级数学下册第十七章方差与频数分布难点解析练习题(名师精选)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共23页。试卷主要包含了下列一组数据,在这学期的六次体育测试中,甲等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中(  ) 成绩(单位:环)378810778910A.甲的平均数大于乙的平均数B.甲的中位数小于乙的中位数C.甲的众数大于乙的众数D.甲的方差小于乙的方差2、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期个数11121013131312对于小强做引体向上的个数,下列说法错误的是(    A.平均数是12 B.众数是13C.中位数是12.5 D.方差是3、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是(     平均成绩(分)95989698方差3322A. B. C. D.4、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是(     参加人数平均数中位数方差4095935.14095954.6A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲,乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名5、下列一组数据:-2、-1、0、1、2的平均数和方差分别是(    A.0和2 B.0和 C.0和1 D.0和06、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是(  )A.平均数 B.中位数 C.众数 D.方差7、在对一组样本数据进行分析时,小华列出了方差的计算公式S2,下列说法错误的是(    A.样本容量是5 B.样本的中位数是4C.样本的平均数是3.8 D.样本的众数是48、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表.若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选(   组名方差4.33.243.6A.甲 B.乙 C.丙 D.丁9、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是(    A.乙同学的成绩更稳定 B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定10、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是(    A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若一组数据,…的平均数是2,方差是1.则,…的平均数是_______,方差是_______.2、阅读下列材料:为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下:7684908681878682858382848589798091897479回答下列问题:(1)甲成绩的平均数是_______,乙成绩的平均数是_______.(2)经计算知,这表明______(用简明的文字语言表述).(3)你认为选谁去参加比赛更合适?________,理由是_________.3、某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差4513514918045135151130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)其中正确的命题是___________.(只填序号)4、已知一组数据它们的平均数是,则______,这一组数据的方差为______.5、数据6,3,9,7,1的极差是_________.三、解答题(5小题,每小题10分,共计50分)1、 “足球运球”是中考体育选考项目之一.某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按ABCD四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是   度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在   等级;(4)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?2、中国共产党第十九届中央委员会第六次全体会议,于2021年11月8日至11日在北京举行.为了加强学生对时事政治的学习了解,某校开展了全校学生学习时事政治活动并进行了时事政治知识竞赛,从八、九年级中各随机抽取了20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:5,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,9,10,10,10.八、九年级抽取学生的竞赛成绩统计表.年级八年级九年级平均数7.87.8中位数ab众数7c优秀率30%35%根据以上信息,解答下列问题:(1)填空:a   b   c   (2)估计该校八年级1500名学生中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级学生时事政治的竞赛成绩谁更优异,3、九(1)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):89710109101010787981010910910(1)甲队成绩的中位数是     分,乙队成绩的众数是     分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是     队.4、某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,复赛成绩(满分为100分)如图所示. (1)根据图示填写表格:班级平均数(分)中位数(分)众数(分)九(1) 85 九(2)85 100(2)已知九年级(2)班复赛成绩的方差为160,计算九年级(1)班复赛成绩的方差,并分析哪个班的复赛成绩稳定.5、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下: 平均成绩中位数众数方差a771.27b8c根据以上信息,整理分析数据如下:(1)填空:a        b        c        (2)从平均数和中位数的角度来比较,成绩较好的是        ;(填“甲”或“乙”)(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由. -参考答案-一、单选题1、C【分析】根据题意求出众数,中位数,平均数和方差,然后进行判断即可.【详解】解:A、甲的成绩的平均数=(3+7+8+8+10)=7.2(环),乙的成绩的平均数=(7+7+8+9+10)=8.2(环),所以A选项说法错误,不符合题意;B、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;D、,所以D选项说法错误,不符合题意.故选C.【点睛】本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.2、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.3、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键4、D【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D.【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.5、A【分析】根据平均数公式与方差公式计算即可.【详解】解:故选择A.【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键.6、B【分析】根据中位数不受极端值的影响即可得.【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B.【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.7、D【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为则样本的容量是5,选项A正确;样本的中位数是4,选项B正确;样本的平均数是,选项C正确;样本的众数是3和4,选项D错误;故选:D.【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、B【分析】根据方差的意义求解即可.【详解】解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.9、A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A.【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.10、D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:,A选项正确;60~80分钟的人数为:人,先对数据排序后可得:最中间的数在第20,21之间,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:人,估算全校人数中每天超过1小时的人数为:人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.二、填空题1、8    9    【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1x2,…xn的平均数是2,∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;∵数据x1x2,…xn的方差为1,∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,∴数据3x1+2,3x2+2,…+3xn+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.2、84    83.2    甲的成绩比乙稳定        甲的平均成绩高且比较稳定    【分析】(1)利用平均数等于一组数据的总和除以这组数据的个数,即可求解;(2)根据题意得:,则甲的成绩比乙稳定,即可求解;(3)根据甲的平均成绩高且比较稳定,即可确定甲去.【详解】(1)甲成绩的平均数是:乙成绩的平均数是:(2)∵∴甲的成绩比乙稳定,(3)甲去参加比赛更合适,理由:甲的平均成绩高且比较稳定.【点睛】本题主要考查了求平均数,运用平均数和方差作决策,熟练掌握平均数等于一组数据的总和除以这组数据的个数是解题的关键.3、(2)(3)【分析】平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.【详解】解:两个班的平均成绩均为135次,故(1)错误;方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.综上可得三个说法中只有(2)(3)正确.故答案为:(2)(3).【点睛】本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4、        【分析】先根据平均数的定义确定出的值,再根据方差的计算公式计算即可.【详解】解:数据 的平均数是这组数据的方差是:故答案为:2,【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5、8【分析】根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.【详解】解:数据6,3,9,7,1的极差是故答案为:【点睛】本题考查了极差定义,理解极差的定义是解题的关键.三、解答题1、(1);(2)见解析;(3)B;(4)50.【分析】(1)首先根据B等级的人数和所占的百分比求出总人数,然后求出C等级的人数和所占的百分比,进而可求出C对应的扇形的圆心角的度数;(2)根据(1)中求出的C等级的人数补全条形统计图即可;(3)把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,根据题意求解即可;(4)根据样本中A等级的人数和总人数可求出所占的百分比,即可求出九年级500名学生中A等级的学生人数.【详解】解:(1)∵B等级的人数是18,所占的百分比是∴总人数为(人),C等级的人数为(人),C等级的人数所占的百分比为C对应的扇形的圆心角是(2)由(1)可得,C等级的人数为13(人),∴如图所示,(3)由(1)可得,共有40名学生,∴中位数为第20位学生和第21位学生成绩的平均数,A等级有4人,B等级有18人,∴第20位学生和第21位学生成绩都在B等级,∴所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案是:B(4)∵A等级的学生有4人,总人数有40人,A等级的人数所占的百分比为∴九年级500名学生中A等级的学生人数为(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,正确分析统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比大小.2、(1)7.5;8;8.(2)750人;(3)从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.【分析】(1)根据题意,利用表格和扇形统计图给出的数据,即可求出abc的值;(2)先求出样本中八年级8分及以上的频率,然后估算总体的数量即可;(3)根据两个年级的优秀率,即可进行判断.【详解】解:(1)根据题意,八年级的数据中,中位数为:九年级的扇形图数据中,8分出现最多,中位数落在8分内,∴中位数:众数为:故答案为:7.5;8;8.(2)样本中八年级8分及以上的频率为:∴该校八年级1500名学生中竞赛成绩达到8分及以上的人数有:(人);(3)根据数据可知,八年级的优秀率为30%;九年级的优秀率为35%;∴从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.【点睛】本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.3、(1)9.5,10;(2)平均成绩为9分,方差为1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是: [4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、(1)九(1)班平均数为85,众数为85,九(2)班中位数为80;(2)70;(3)九年级(1)班复赛成绩的方差为70,九(1)班的方差小,成绩更稳定些.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数、众数的定义和平均数的求法即可得答案;(2)根据方差公式计算可得九年级(1)班复赛成绩的方差,根据平均数相同,方差越小,成绩越稳定即可得答案.【详解】(1)由图可知:九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、75、80、100、100,九(1)班的平均数为(75+80+85+85+100)÷5=85,∵九(1)班的5个成绩中,85出现2次,∴九(1)的众数为85,∵九(2)班的5个成绩中,中间的数是80,∴九(2)班的中位数为80,填表如下: 平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100(2)∵九(1)班平均数为85,∴九(1)班方差s12=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,∵九(2)班的方差为160,70<160,∴九(1)班的成绩更稳定些.【点睛】本题考查平均数、中位数、众数及方差,将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据叫做这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数称为这组数据的中位数;一组数据中,出现次数最多的数据称为这组数据的众数;方差越大,数据的波动越大;方差越小,数据的波动越小;熟练掌握相关定义及方差公式是解题关键.5、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析【分析】(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好.【详解】解:(1)甲的平均成绩为乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,所以中位数==4.2故答案为:7,7.5,4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,故答案为:乙;(3)选择乙参加比赛,理由:从平均数上看,甲、乙平均成绩相等,总分相等,从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,故应选乙队员参赛.【点睛】本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键. 

    相关试卷

    初中北京课改版第十七章 方差与频数分布综合与测试课后复习题:

    这是一份初中北京课改版第十七章 方差与频数分布综合与测试课后复习题,共19页。试卷主要包含了某排球队6名场上队员的身高,为考察甲,下列说法中正确的是.等内容,欢迎下载使用。

    数学八年级下册第十七章 方差与频数分布综合与测试练习题:

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习题,共20页。试卷主要包含了在一次射击训练中,甲等内容,欢迎下载使用。

    初中第十七章 方差与频数分布综合与测试课时训练:

    这是一份初中第十七章 方差与频数分布综合与测试课时训练,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map