北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题
展开京改版八年级数学下册第十七章方差与频数分布定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶,出现一次故障”是随机事件
C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨
D.若两组数据的平均数相同,则方差大的更稳定
2、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )
A.众数是 B.中位数是 C.平均数是 D.方差是
3、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )
| 甲 | 乙 | 丙 | 丁 |
平均数/m | 180 | 180 | 185 | 185 |
方差 | 8.2 | 3.9 | 75 | 3.9 |
A.甲 B.乙 C.丙 D.丁
4、2020年6月1日《苏州市生活垃圾分类管理条例》正式实施.为了配合实施垃圾分类,让同学们了解垃圾分类的相关知识.八年级某班甲、乙、丙、丁四个小组的同学参加了年级“垃圾分类知识”预赛,四个小组的平均分相同,下面表格为四个小组的方差.若要从中选出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
方差 | 3.6 | 3.5 | 4 | 3.2 |
A.甲组 B.乙组 C.丙组 D.丁组
5、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )
A.众数 B.平均数 C.中位数 D.方差
6、甲、乙两位同学连续五次的数学成绩如下图所示:
下列说法正确的是( )
A.甲的平均数是70 B.乙的平均数是80
C.S2甲>S2乙 D.S2甲=S2乙
7、已知一组数据的方差s2=[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为( )
A.5 B.7 C.10 D.11
8、下列说法中正确的是( ).
A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查
C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小
9、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:==3.6,==6.3.则麦苗又高又整齐的是( )
A.甲 B.乙 C.丙 D.丁
10、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )
| 参加人数 | 平均数 | 中位数 | 方差 |
甲 | 40 | 95 | 93 | 5.1 |
乙 | 40 | 95 | 95 | 4.6 |
A.甲班的成绩比乙班的成绩稳定
B.甲班成绩优异的人数比乙班多
C.甲,乙两班竞褰成绩的众数相同
D.小明得94分将排在甲班的前20名
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,,则在本次训练中,运动员__________的成绩更稳定.
2、一组数据3,4,3,,8的平均数为5,则这组数据的方差是______.
3、 “绿水青山就是金山银山”为了响应党中央对环境保护的号召,某校要从报名的甲、乙、丙三人中选取一人去参加南宁市举办的环保演讲比赛经过两轮初赛后,甲、乙、丙三人的平均成绩都是89,方差分别是,,.你认为__________参加决赛比较合适.
4、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm),计算它们的平均数和方差,结果为:,,,.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).
5、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.
三、解答题(5小题,每小题10分,共计50分)
1、某学校为了调查学生利用“天天跳绳”APP锻炼身体的使用频率,随机抽取了部分学生,利用调查问卷进行抽样调查:用“A”表示“一周5次”,“B”表示“一周4次”,“C”表示“一周3次”,“D”表示“一周2次”(必须选且只选一项),如图是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:
(1)本次调查中,共调查了多少人?
(2)将图(2)补充完整;
(3)如果该学校有学生1000人,请你估计该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有多少人?
2、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查.两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示.
将以上信息整理分析如下:
| 平均数 | 中位数 | 众数 | 方差 |
甲公司 | a | 7 | c | d |
乙公司 | 7 | b | 5 | 7.6 |
(1)填空:a=_____;b=_____;c=_____;d=_____;
(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.
3、某校学生会为了解该校2860名学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:
(1)在这次研究中,一共调查了 名学生.
(2)喜欢排球的人数在扇形统计图中所占的圆心角是 度.
(3)补全频数分布折线统计图.
(4)估计该校喜欢排球的学生有多少人?
4、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
| 平均成绩 | 中位数 | 众数 | 方差 |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
根据以上信息,整理分析数据如下:
(1)填空:a= ;b= ;c= ;
(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)
(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.
5、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程.为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98.
活动后被抽取学生竞赛成绩 频数分布表 | |
成绩x(分) | 频数(人) |
75≤x<80 | 1 |
80≤x<85 | 3 |
85≤x<90 | 7 |
90≤x<95 | m |
95≤x<100 | n |
请你根据以上信息解决下列问题:
(1)本次调查的样本容量是 ,表中m= ; n= ;
(2)若想直观地反映出活动前后被抽取学生竞赛成绩的变化情况,应该把数据整理,绘制成 统计图;(填“扇形”“条形”或“折线”)
(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人?
-参考答案-
一、单选题
1、B
【分析】
根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.
【详解】
解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;
B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;
C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;
D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;
故选:B.
【点睛】
此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.
2、D
【分析】
根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可
【详解】
根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7
其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;
这组数据的中位数为:6,故B选项正确,不符合题意;
这组数据的平均数为,故C选项正确,不符合题意;
这组数据的方差为:,故D选项不正确,符合题意.
故选D.
【点睛】
本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.
3、D
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵,
∴从丙和丁中选择一人参加比赛,
∵S丙2>S丁2,
∴选择丁参赛,
故选:D.
【点睛】
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
4、D
【分析】
在平均分数相同的情况下,方差越小,波动越小,成绩越稳定,即可得出选项.
【详解】
解:由图标可得:,
∵四个小组的平均分相同,
∴若要从中选出一个实力更平均的小组代表年级参加学校决赛,应选择丁组,
故选:D.
【点睛】
题目主要考查了方差,理解方差反映数据的波动程度,当平均数相同时,方差越大,波动性越大是解题关键.
5、A
【分析】
依据平均数、中位数、众数、方差的定义即可得到结论.
【详解】
解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;
B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;
C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;
D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;
故选:A.
【点睛】
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.
6、D
【分析】
根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案
【详解】
由条形统计图可知,甲的平均数是,故A选项不正确;
乙的平均数是,故B选项不正确;
甲的方差为,
乙的方差为,
故C选项不正确,D选项正确;
故选D.
【点睛】
本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.
7、D
【分析】
根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.
【详解】
解:由题意知,这组数据为6,10,a,b,8,其平均数为7,
则×(6+10+a+b+8)=7,
∴a+b=11,
故选:D.
【点睛】
本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.
8、B
【分析】
分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.
【详解】
解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;
B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;
C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;
D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
9、D
【分析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
【详解】
解:,
乙、丁的麦苗比甲、丙要高,
,
甲、丁麦苗的长势比乙、丙的长势整齐,
综上,麦苗又高又整齐的是丁,
故选:D.
【点睛】
本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
10、D
【分析】
分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.
【详解】
A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;
B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;
C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;
D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;
故选:D.
【点睛】
本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.
二、填空题
1、乙
【分析】
先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.
【详解】
解:∵,,
∴,
∴乙运动员的成绩更稳定;
故答案为:乙.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、4.4
【分析】
根据数据的平均数可求得a,再由方差计算公式可计算出此数据的平均数.
【详解】
由题意得:
解得:a=7
则方差为:
故答案为:4.4.
【点睛】
本题考查了平均数与方差,掌握它们的计算公式是关键.
3、丙
【分析】
根据方差越小,成绩越稳定即可判断.
【详解】
解:∵,,,且1.5<3.3<12,
,
丙的成绩最稳定,
丙参加决赛比较合适,
故答案为:丙.
【点睛】
本题主要考查方差的意义,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
4、甲
【分析】
根据题意可得:,即可求解.
【详解】
解:∵,,,.
∴,
∴甲试验田麦苗长势比较整齐.
故答案为:甲
【点睛】
本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键.
5、最大值与最小值 组距 组数 频数分布表 频数分布直方图
【分析】
根据频数分布直方图的步骤即可得出
【详解】
分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.
故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图
【点睛】
本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,
三、解答题
1、(1)人;(2)补全图形见解析;(3)人
【分析】
(1)由C组有100人,占比列式计算后可得答案;
(2)先求解B组人数,再补全图形即可;
(3)由总人数1000乘以D组“一周2次”的占比即可得到答案.
【详解】
解:(1)由C组有100人,占比 可得:
本次调查中,共调查人.
(2)B组人数有人,
补全图形如下:
(3)该学校有学生1000人,该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有:人.
【点睛】
本题考查的是从扇形图与条形图中获取信息,补全条形统计图,利用样本估计总体,理解扇形图与条形图中关联信息是解本题的关键.
2、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析.
【分析】
(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;
(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可.
【详解】
解:(1)甲公司平均月收入:a={5+6+7×4+8×2+9×[10×(1﹣10%﹣10%﹣40%﹣20%)]}=7.3(千元);
乙公司滴滴中位数为b==5.5(千元);
甲公司众数c=7(千元);
甲公司方差:d=[4×(7﹣7.3)2+2×(8﹣7.3)2+2×(9﹣7.3)2+(5﹣7.3)2+(6﹣7.3)2]=1.41;
故答案为:7.3,5.5,7,1.41;
(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司方差小,更稳定.
【点睛】
本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键.
3、(1)100;(2)36;(3)见解析;(4)286
【分析】
(1)用乒乓球的人数除以其百分比即可得到调查的学生数;
(2)先计算出喜欢篮球的人数,得到喜欢排球的人数,根据公式计算喜欢排球的人数在扇形统计图中所占的圆心角度数;
(3)根据(2)的数据补全统计图;
(4)用学校的总人数乘以喜欢排球的比例即可得到答案.
【详解】
解:调查的学生有(名),
故答案为:100;
(2)喜欢篮球的人数有(名),
喜欢排球的人数是100-30-20-40=10(名),
∴喜欢排球的人数在扇形统计图中所占的圆心角是,
故答案为:36;
(3)如图:
(4)该校喜欢排球的学生有(人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析
【分析】
(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;
(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,
(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好.
【详解】
解:(1)甲的平均成绩为
乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,
所以中位数
=
=4.2
故答案为:7,7.5,4.2.
(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,
故答案为:乙;
(3)选择乙参加比赛,理由:
从平均数上看,甲、乙平均成绩相等,总分相等,
从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,
从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,
从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,
从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,
故应选乙队员参赛.
【点睛】
本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键.
5、(1)25,6,8
(2)折线
(3)1120人
【分析】
(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值.
(2)折线统计图可以反映数据变化.
(3)等级的频率为,进而估计名同学成绩为等级的学生人数.
(1)
解:由题意可知样本容量为25, m=6, n=8
故答案为:25,6,8.
(2)
解:折线统计图可以反映数据变化
故答案为:折线.
(3)
解:∵等级的频率为
∴
∴该校2000名同学中活动后的竞赛成绩为等级的学生有人.
【点睛】
本题考查了数据统计.解题的关键在于正确查取各成绩区间学生个数.
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共20页。试卷主要包含了某校九年级,在一次射击训练中,甲,一组数据等内容,欢迎下载使用。
数学八年级下册第十七章 方差与频数分布综合与测试复习练习题: 这是一份数学八年级下册第十七章 方差与频数分布综合与测试复习练习题,共19页。试卷主要包含了在频数分布表中,所有频数之和,一组数据a-1等内容,欢迎下载使用。
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共21页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。