数学北京课改版第十四章 一次函数综合与测试精练
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、函数y=的自变量x的取值范围是( )
A.x≠0B.x≠1C.x≠±1D.全体实数
2、如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点An的纵坐标为( )
A.()nB.()n+1C.()n﹣1+D.
3、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )
A.2B.-1C.-2D.4
4、若直线y=kx+b经过第一、二、三象限,则函数y=bx﹣k的大致图象是( )
A.B.C.D.
5、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A. B.
C. D.
6、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3)B.(-2,3)
C.(-3,2)或(-3,-2)D.(-3,2)
7、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
8、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1hB.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80kmD.0.75h或1.125h时,乙比甲多行驶10km
9、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )
A.100 m/min,266m/minB.62.5m/min,500m/min
C.62.5m/min,437.5m/minD.100m/min,500m/min
10、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点在轴上,则________;点的坐标为________.
2、(1)每一个含有未知数x和y的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.
3、直线y=x-2与y轴交点坐标是_____.
4、请写出符合以下两个条件的一个函数解析式______.①过点(-2,1),②在第二象限内,y随x增大而增大.
5、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.
三、解答题(5小题,每小题10分,共计50分)
1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
2、如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足,C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P.
(1)如图1,写出a、b的值,证明△AOP≌△BOC;
(2)如图2,连接OH,求证:∠OHP=45°;
(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,求证:S△BDM﹣S△ADN=4.
3、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润.
(3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案.
4、某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.
方案一:买一件夹克送一件衬衣
方案二:夹克和衬衣均按定价的80%付款
现有顾客要到该商场购买夹克30件,衬衣x件(x>30)
(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;
(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?
(3)当x=40时,哪种方案更省钱?请说明理由.
5、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m= ,n= ;
(2)当x为何值时,甲追上了乙?
(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由题意直接依据分母不等于0进行分析计算即可.
【详解】
解:由题意可得,
所以自变量x的取值范围是全体实数.
故选:D.
【点睛】
本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.
2、A
【解析】
【分析】
联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,),依次求出:点A2的纵坐标为、A3的纵坐标为,即可求解.
【详解】
解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);
则点B1(,0),则直线B1A2的表达式为:y=x+b,
将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,
将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;
同理可得A3的纵坐标为,
…按此规律,则点An的纵坐标为()n,
故选:A.
【点睛】
本题为探究规律类题目,求此类和一次函数的交点有关的规律题,需要将前几个交点一次求出来,然后找到点的横坐标,纵坐标之间的关系,可能出现周期的规律,或者后面的数时前面数的倍数或差相同等的规律.
3、C
【解析】
【分析】
首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
【详解】
解:由题意得:x=1时,y=k+3,
∵在x=1处,自变量增加2,函数值相应减少4,
∴x=3时,函数值是k+3-4,
∴3k+3=k+3-4,
解得:k=-2,
故选C.
【点睛】
此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
4、D
【解析】
【分析】
直线y=kx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.
【详解】
解:直线y=kx+b经过第一、二、三象限,则,
时,函数y=bx﹣k的图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.
5、C
【解析】
【分析】
分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
【详解】
解:当两车相遇时,所用时间为120÷(60+90)=小时,
B车到达甲地时间为120÷90=小时,
A车到达乙地时间为120÷60=2小时,
∴当0≤x≤时,y=120-60x-90x=-150x+120;
当<x≤时,y=60(x-)+90(x-)=150x-120;
当<x≤2是,y=60x;
由函数解析式的当x=时,y=150×-120=80.
故选:C
【点睛】
本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
6、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
7、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
8、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
9、D
【解析】
【分析】
根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.
【详解】
解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;
公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.
故选:D.
【点睛】
本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
10、A
【解析】
【分析】
设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.
【详解】
解:设直线的解析式为 ,
把点,点代入,得:
,解得:,
∴直线的解析式为,
∵将直线向下平移8个单位得到直线,
∴直线的解析式为 ,
∵点关于轴对称的点为 ,
设直线的解析式为 ,
把点 ,点代入,得:
,解得:,
∴直线的解析式为,
将直线与直线的解析式联立,得:
,解得: ,
∴直线与直线的交点坐标为.
故选:A
【点睛】
本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.
二、填空题
1、
【解析】
【分析】
根据轴上的点,纵坐标为0,求出m值即可.
【详解】
解:∵点在轴上,
∴,
解得,,
则;
点的坐标为(-2,0);
故答案为:-3,(-2,0).
【点睛】
本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.
2、 y=kx+b(k,b是常数,k≠0) 直线 自变量 多少 交点坐标
【解析】
【分析】
(1)根据一次函数与二元一次方程的关系解答即可;
(2)根据一次函数与二元一次方程组的关系解答即可;
【详解】
(1)一般地,任何一个二元一次方程都可转化为一次函数的形式,
∴每个二元一次方程都对应一个一次函数,也对应一条直线,
故答案为:y=kx+b(k,b是常数,k≠0);直线
(2)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
∴答案为:自变量;多少;交点坐标
【点睛】
此题考查一次函数与二元一次方程问题,关键是根据一次函数与二元一次方程(组)的关系解答.
3、 (0,-2)
【解析】
【分析】
当x=0时,求y的值,从而确定直线与y轴的交点.
【详解】
解:∵当x=0时,y=-2,
∴直线y=x-2与y轴交点坐标是(0.-2).
故答案为:(0,-2).
【点睛】
本题考查一次函数与坐标轴的交点坐标,利用数形结合思想解题是关键.
4、(答案不唯一)
【解析】
【分析】
根据一次函数的性质,即可求解.
【详解】
解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1)
如 等.
故答案为: (答案不唯一)
【点睛】
本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键.
5、二
【解析】
【分析】
根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.
【详解】
解:∵直线y=ax﹣1与直线y=2x+1平行,
∴ a=2,
∴直线y=ax﹣1的解析式为y=2x﹣1
∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;
故答案为:二.
【点睛】
本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.
三、解答题
1、(1);(2)5;(3)点P的坐标为(,-445)或(-,845)
【解析】
【分析】
(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
【详解】
解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
∴AO=CB=4,OB=AC=8,
∴A点坐标为(0,4),B点坐标为(8,0).
设对角线AB所在直线的函数关系式为y=kx+b,
则有4=b0=8k+b,解得:,
∴对角线AB所在直线的函数关系式为y=-x+4.
(2)∵∠AOB=90°,
∴勾股定理得:AB=AO2+OB2=45,
∵MN垂直平分AB,
∴BN=AN=AB=25.
∵MN为线段AB的垂直平分线,
∴AM=BM
设AM=a,则BM=a,OM=8-a,
由勾股定理得,a2=42+(8-a)2,
解得a=5,即AM=5.
(3)(方法一)∵OM=3,
∴点M坐标为(3,0).
又∵点A坐标为(0,4),
∴直线AM的解析式为y=-x+4.
∵点P在直线AB:y=-x+4上,
∴设P点坐标为(m,-m+4),
点P到直线AM:x+y-4=0的距离h=43m-12m+4-4432+12=m2.
△PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
解得m=± ,
故点P的坐标为(,-445)或(-,845).
(方法二)∵S长方形OACB=8×4=32,
∴S△PAM=32.
设点P的坐标为(x,-x+4).
当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
解得:x=,
∴点P的坐标为(,-445);
当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
解得:x=-,
∴点P的坐标为(-,845).
综上所述,点P的坐标为(,-445)或(-,845).
【点睛】
本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
2、(1)a=4,b=﹣4,见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)先依据非负数的性质求得、的值从而可得到,然后再,,最后,依据可证明;
(2)要证,只需证明平分,过分别作于点,作于点,只需证到,只需证明即可;
(3)连接,易证,从而有,由此可得.
【详解】
(1)解:,
,,
,,
则.
即,,
,
.
在与中,
,
;
(2)证明:过分别作于点,作于点.
在四边形中,,
.
,
,
在与中,
,
,
.
,,
平分,
;
(3)证明:如图:连接.
,,为的中点,
,,,
,,
.
即,
.
在与中,
,
,
.
.
【点睛】
本题是一次函数综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(3)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.
3、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购进电冰箱台,空调台销售总利润最大;当时,,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大
【解析】
【分析】
设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;
设购进电冰箱台,这台家电的销售总利润为元,则,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得,再由为正整数,的,,,,,,,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;
当电冰箱出厂价下调元时,则利润,分三种情况讨论:当;当时;当;利用一次函数的性质,即可解答.
【详解】
解:设每台空调的进价为元,则每台电冰箱的进价为元,
根据题意得:,
解得:,
经检验,是原方程的解,且符合题意,
,
答:每台空调的进价为元,则每台电冰箱的进价为元.
设购进电冰箱台,这台家电的销售总利润为元,
则,
根据题意得:,
解得:,
为正整数,
,,,,,,,
合理的方案共有种,
即电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
电冰箱台,空调台;
,,
随的增大而减小,
当时,有最大值,最大值为:元,
答:当购进电冰箱台,空调台获利最大,最大利润为元.
当厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,
则利润,
当,即时,随的增大而增大,
,
当时,这台家电销售总利润最大,即购进电冰箱台,空调台;
当时,,各种方案利润相同;
当,即时,随的增大而减小,
,,
当时,这台家电销售总利润最大,即购进电冰箱台,空调台;
答:当时,购进电冰箱台,空调台销售总利润最大;
当时,,各种方案利润相同;
当时,购进电冰箱台,空调台销售总利润最大.
【点睛】
本题考查了列分式方程的应用、一元一次不等式组的应用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键.
4、(1);(2)当时;(3)当x=40时,方案一更省钱.理由见解析.
【解析】
【分析】
(1)由题意分别根据方案一和方案二的条件列出代数式即可;
(2)根据题意可得,即,进而进行求解即可得出结论;
(3)根据题意把x=40分别代入y1和y2,进而分析即可得出结论.
【详解】
解:(1)由题意可得:
方案一购买共需付款(元),
方案二购买共需付款(元);
(2)由题意可得,即,
解得:,
所以购买衬衣90件时,两种方案付款一样多;
(3)当x=40时,(元),
(元),
因为,
所以当x=40时,方案一更省钱.
【点睛】
本题考查一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出关系式;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).
5、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.
【解析】
【分析】
(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程÷速度可求提速后所用时间,即可得到m值,进而得出n的值;
(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;
(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可.
【详解】
解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;
当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是(m/s);
∵甲出发一段时间后速度提高为原来的3倍,
∴甲提速后速度为6m/s,
故提速后甲行走所用时间为:(s),
∴m=30+60=90(s)
∴n=400÷(s);
故答案为10;2;90;100;
(2)设OA段对应的函数关系式为y=kx,
∵A(90,360)在OA上,
∴90k=360,解得k=4,
∴y=4x.
设BC段对应的函数关系式为y=k1x+b,
∵B(30,40)、C(90,400)在BC上,
∴,
解得,
∴y=6x-140,
由乙追上了甲,得4x=6x-140,
解得x=70.
答:当x为70秒时,甲追上了乙.
(3)由题意可得,
,
解得x=55或x=85,
即55≤x≤85时,甲、乙之间的距离不超过30米;
当4x=400﹣30时,
解得x=92.5,
即92.5≤x≤100时,甲、乙之间的距离不超过30米;
由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.
【点睛】
本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题.
北京课改版八年级下册第十四章 一次函数综合与测试课时作业: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了点P的坐标为,已知点等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试课时练习: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时练习,共29页。试卷主要包含了点在第四象限,则点在第几象限,已知点A,已知一次函数y=ax+b等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题,共22页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。