北京课改版八年级下册第十四章 一次函数综合与测试课后练习题
展开京改版八年级数学下册第十四章一次函数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟 | 0 | 5 | 10 | 15 | 20 | 25 |
温度/℃ | 10 | 25 | 40 | 55 | 70 | 85 |
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
2、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>
3、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )
A.2 B.-1 C.-2 D.4
4、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是( )
A. B.
C. D.
5、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )
A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-1
6、下列命题中,真命题是( )
A.若一个三角形的三边长分别是a、b、c,则有
B.(6,0)是第一象限内的点
C.所有的无限小数都是无理数
D.正比例函数()的图象是一条经过原点(0,0)的直线
7、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
A.正东方向 B.正西方向 C.正南方向 D.正北方向
8、在平面直角坐标系中,已知点P(5,−5),则点P在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A. B.
C. D.
10、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
A.y=n(+0.6) B.y=n()+0.6
C.y=n(+0.6) D.y=n()+0.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数 的定义域是________.
2、已知点在轴上,则________;点的坐标为________.
3、写出一个一次函数,使其函数值随着自变量的值的增大而增大:______.
4、A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,如图,l1,l2表示两人离A地的距离:s(km)与时间t(h)的关系,则乙出发_____h两人恰好相距5千米.
5、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.
三、解答题(5小题,每小题10分,共计50分)
1、已知函数y=(k-3)xk+2是正比例函数,求代数式k2-1的值.
2、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.
(1)请你用表格表示气温与音速之间的关系.
(2)表格反映了哪两个变量之间的关系?哪个是自变量?
(3)当气温是35℃时,估计音速y可能是多少?
(4)能否用一个式子来表示两个变量之间的关系?
3、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
4、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
(1)求y甲、y乙关于x的函数表达式;
(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
(3)甲出发_______小时后,甲、乙两人相距5千米.
5、小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.
(1)求买一支康乃馨和一支百合各需多少元?
(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.
①求w与x之间的函数关系式;
②请你帮小美设计一种使费用最少的买花方案,并求出最少费用.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
2、C
【解析】
【分析】
利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.
【详解】
解:函数值y随自变量x的增大而减小,那么1+2m<0,
解得m<.
故选:C.
【点睛】
本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.
3、C
【解析】
【分析】
首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
【详解】
解:由题意得:x=1时,y=k+3,
∵在x=1处,自变量增加2,函数值相应减少4,
∴x=3时,函数值是k+3-4,
∴3k+3=k+3-4,
解得:k=-2,
故选C.
【点睛】
此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
4、D
【解析】
【分析】
若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
【详解】
解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
故选D.
【点睛】
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
5、C
【解析】
【分析】
把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.
【详解】
解:由题意得:
解得:
故所求的一次函数关系为
故选:C.
【点睛】
本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.
6、D
【解析】
【分析】
根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
【详解】
解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
C、无限不循环小数都是无理数,
D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
故选:D
【点睛】
本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
7、B
【解析】
【分析】
根据二人向同一方向走的距离可知二人的方向关系,解答即可.
【详解】
解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.
【点睛】
本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
8、D
【解析】
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
9、C
【解析】
【分析】
分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.
【详解】
解:当两车相遇时,所用时间为120÷(60+90)=小时,
B车到达甲地时间为120÷90=小时,
A车到达乙地时间为120÷60=2小时,
∴当0≤x≤时,y=120-60x-90x=-150x+120;
当<x≤时,y=60(x-)+90(x-)=150x-120;
当<x≤2是,y=60x;
由函数解析式的当x=时,y=150×-120=80.
故选:C
【点睛】
本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.
10、A
【解析】
【分析】
由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;
【详解】
解:因为用m元钱在网上书店恰好可购买100本书,
所以每本书的价格为元,
又因为每本书需另加邮寄费6角,
所以购买n本书共需费用y=n(+0.6)元;
故选:A.
【点睛】
本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.
二、填空题
1、x≠-1
【解析】
【分析】
根据分母不为零,即可求得定义域.
【详解】
解:由题意,
即
故答案为:
【点睛】
本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.
2、
【解析】
【分析】
根据轴上的点,纵坐标为0,求出m值即可.
【详解】
解:∵点在轴上,
∴,
解得,,
则;
点的坐标为(-2,0);
故答案为:-3,(-2,0).
【点睛】
本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.
3、(答案不唯一)
【解析】
【分析】
根据其函数值随着自变量的值的增大而增大,可得该一次函数的自变量系数大于0,即可求解.
【详解】
解:∵其函数值随着自变量的值的增大而增大,
∴该一次函数的自变量系数大于0,
∴该一次函数解析式为.
故答案为:(答案不唯一)
【点睛】
本题主要考查了一次函数的性质,求函数值,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
4、0.8或1
【解析】
【分析】
分相遇前或相遇后两种情形分别列出方程即可解决问题.
【详解】
解:由题意可知,乙的函数图象是l2,
甲的速度是=30(km/h),乙的速度是=20(km/h).
设乙出发x小时两人恰好相距5km.
由题意得:30(x+0.5)+20x+5=60或30(x+0.5)+20x﹣5=60,
解得x=0.8或1,
所以甲出发0.8小时或1小时两人恰好相距5km.
故答案为:0.8或1.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
5、y=48x+20(x>2)##y=20+48x(x>2)
【解析】
【分析】
根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.
【详解】
解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,
∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:
y=(60x-100)×0.8+100=48x+20(x>2),
故答案为:y=48x+20(x>2).
【点睛】
本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.
三、解答题
1、0
【解析】
【分析】
根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量指数为1,得出k值,代入代数式求解即可.
【详解】
解:∵函数y=(k-3)xk+2是正比例函数,
∴k+2=1且k-3≠0,
解得:k=-1,
∴k2-1=(-1)2-1=0.
【点睛】
本题考查了正比例函数的定义,熟知正比例函数的定义是解题关键.
2、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+x.
【解析】
【分析】
(1)根据题中数据列出表格.
(2)找出题中的两个变量.
(3)根据传播速度与温度的变化规律进而得出答案.
(4)结合(3)中发现得出两个变量之间的关系.
【详解】
(1)列表如下:
x(℃) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
y(米/秒) | 331 | 334 | 337 | 340 | 343 | 346 | 349 |
(2)两个变量是:传播的速度和温度,温度是自变量.
(3) 根据表格中音速y(米/秒)随着气温x(℃)的变化规律可知,
当气温再增加5℃,音速就相应增加3米/秒,即为349+3=352(米/秒),
当气温是35℃时,估计音速y可能是:352米/秒.
(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+x.
【点睛】
本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键.
3、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【解析】
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
4、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
【解析】
【分析】
(1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
(2)联立方程组,求出方程组的解即可;
(3)分相遇前和相遇后相距5千米列出方程求解即可.
【详解】
解:(1)设直线l1的解析式为
∵直线l1过点(2,0),(0,10)
∴代入解析式得,
解得,
∴直线l1的解析式为
设直线l2的解析式为
∵直线l2过点(0.5,0),(3,10)
∴代入解析式得,
解得,
∴直线l2的解析式为.
(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
4(x-0.5)+5x=10,
解得x=.
当x=时,y甲=-5×+10=,
∴相遇时甲离B地为km.
故答案为:,
(3)由题意知:①或②
解得,或
所以,甲出发或小时后,甲、乙两人相距5千米.
故答案为:或.
【点睛】
本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.
5、(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元.
【解析】
【分析】
(1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可;
(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和康乃馨不多于9支求函数的最小值即可.
【详解】
解:(1)设买一支康乃馨需m元,买一支百合需n元,
则根据题意得:,
解得: ,
答:买一支康乃馨需4元,买一支百合需5元;
(2)①根据题意得:w=4x+5(11﹣x)=﹣x+55,
②∵康乃馨不多于9支,
∴x≤9,
∵﹣1<0,
∴w随x的增大而减小,
∴当x=9时,w最小,
即买9支康乃馨,买11﹣9=2支百合费用最少,wmin=﹣9+55=46(元),
答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.
【点睛】
本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式.
北京课改版八年级下册第十四章 一次函数综合与测试一课一练: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共27页。试卷主要包含了点A个单位长度.等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试复习练习题: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试复习练习题,共24页。试卷主要包含了已知点A,已知点等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试课后测评: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共26页。