2021学年第十四章 一次函数综合与测试习题
展开京改版八年级数学下册第十四章一次函数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,真命题是( )
A.若一个三角形的三边长分别是a、b、c,则有
B.(6,0)是第一象限内的点
C.所有的无限小数都是无理数
D.正比例函数()的图象是一条经过原点(0,0)的直线
2、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是( )
A.关于x的不等式ax+b>0的解集是x>2
B.关于x的不等式ax+b<0的解集是x<2
C.关于x的方程ax+b=0的解是x=4
D.关于x的方程ax+b=0的解是x=2
3、已知为第四象限内的点,则一次函数的图象大致是( )
A. B.
C. D.
4、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
5、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
6、一次函数y=kx+b的图象如图所示,则下列说法错误的是( )
A.y随x的增大而减小
B.k<0,b<0
C.当x>4时,y<0
D.图象向下平移2个单位得y=﹣x的图象
7、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
8、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )
A. B. C. D.
9、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )
A. B. C. D.
10、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )
A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元
C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、数形结合是解决数学问题常用的思想方法之一.如图,直线y=2x和直线y=ax+b相交于点A,则方程组的解为______.
2、在平面直角坐标系中,点A的坐标为,点B的坐标为,点P在y轴上,当的值最小时,P的坐标是______.
3、在平面直角坐标系中,A(2,2)、B(3,﹣3),若一次函数y=kx﹣1与线段AB有且只有一个交点,则k的取值范围是___.
4、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.
5、已知函数,如果函数值,那么相应的自变量的取值范围是_______.
三、解答题(5小题,每小题10分,共计50分)
1、为了抗击新冠疫情,全国人民众志成城,守望相助.某地一水果购销商安排15辆汽车装运,,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫.已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆.汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:
水果品种
汽车运载量(吨/辆)
10
8
6
水果获利(元/吨)
800
1200
1000
(1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆
①求与之间的函数关系式;
②设计车辆的安排方案,并写出每种安排方案.
(2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴.该经销商打算将获利连同补贴全部捐出.问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?
2、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.
(1)请直接写出C、D两点的坐标:点C ,点D ;
(2)当BF=BC时,连接FE.
①求点F的坐标;
②求此时△BEF的面积.
3、如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,直线与直线相交于点
(1)求m,n的值;
(2)直线与x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值.
4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.
(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;
(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.
5、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
(1)如图1,求点B、C的坐标;
(2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
【详解】
解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
C、无限不循环小数都是无理数,
D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
故选:D
【点睛】
本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
2、D
【解析】
【分析】
直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.
【详解】
解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;
B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;
C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;
D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;
故选:D.
【点睛】
本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.
3、A
【解析】
【分析】
根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.
【详解】
解:∵为第四象限内的点,
∴ ,
∴ ,
∴一次函数的图象经过第一、二、三象限.
故选:A
【点睛】
本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.
4、A
【解析】
【分析】
由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
【详解】
解:由题意可知BO=CO,
∵又AB=AC,
∴AO⊥BC,
∴点A在y轴上,
∴选项A符合题意,
B选项三点共线,不能构成三角形,不符合题意;
选项C、D都不在y轴上,不符合题意;
故选:A.
【点睛】
本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
5、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
6、B
【解析】
【分析】
由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.
【详解】
解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;
一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;
由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;
由函数图象经过
,解得:
所以一次函数的解析式为:
把向下平移2个单位长度得:,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.
7、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
8、D
【解析】
【分析】
根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.
【详解】
解:由题意及图像可知:,,
y=﹣bx+k中的,,
由一次函数图像与参数的关系可知:D选项符合条件,
故选:D.
【点睛】
本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.
9、A
【解析】
【分析】
设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.
【详解】
解:设直线的解析式为 ,
把点,点代入,得:
,解得:,
∴直线的解析式为,
∵将直线向下平移8个单位得到直线,
∴直线的解析式为 ,
∵点关于轴对称的点为 ,
设直线的解析式为 ,
把点 ,点代入,得:
,解得:,
∴直线的解析式为,
将直线与直线的解析式联立,得:
,解得: ,
∴直线与直线的交点坐标为.
故选:A
【点睛】
本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.
10、C
【解析】
【分析】
根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.
【详解】
设起步价以后函数的解析式为y=kx+b,
把(5,15),(7,19)代入解析式,得,
解得,
∴y=2x+5,
当y=10时,x=2.5,
当x=10时,y=25,
∴C错误,D正确,B正确,A正确,
故选C.
【点睛】
本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.
二、填空题
1、
【解析】
【分析】
由直线y=2x求得A的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解.
【详解】
解:∵直线y=2x和直线y=ax+b相交于点A,A的纵坐标为3,
∴3=2x,解得x=,
∴A(,3),
∴方程组的解为.
故答案为:.
【点睛】
本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键.
2、(0,1)
【解析】
【分析】
如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求.求出直线BA的解析式即可解决问题;
【详解】
解:如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求.
设直线BA的解析式为y=kx+b,
∵A(−1,2),B(2,−1),
则有:,
解得,
∴直线BA的解析式为y=−x+1,
令x=0,y=1
∴P(0,1),
故答案为:(0,1).
【点睛】
本题考查轴对称最短问题,一次函数的应用等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题.
3、﹣≤k≤
【解析】
【分析】
把A点和B点坐标分别代入计算出对应的k的值,然后利用一次函数图象与系数的关系确定k的范围.
【详解】
把A(2,2)代入y=kx﹣1得2k﹣1=2,解得k=;
把B(3,﹣3)代入y=kx﹣1得3k﹣1=﹣3,解得k=﹣,
所以当一次函数y=kx﹣1与线段AB只有一个交点时,﹣≤k≤.
即k的取值范围为﹣≤k≤.
故答案为:﹣≤k≤.
【点睛】
本题主要考查了一次函数图象,掌握一次函数图象与系数的关系成为解答本题的关键.
4、1760
【解析】
【分析】
根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
【详解】
解:小明离家2分钟走了160米,
∴小明初始速度为160÷2=80米/分;
小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
小明在家换衣服3分钟时间,妈妈走了40×3=120米,
设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
则有160t=1200+120+40t,
∴t=11,
∴小明离家距离为11×160=1760米.
故答案为:1760米.
【点睛】
本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
5、x>4
【解析】
【分析】
根据题意,先求出当时,自变量的值,然后根据一次函数的增减性求解即可.
【详解】
解:当时,,
解得,
∵一次函数解析式为,,
∴y随x增大而增大,
∴当时,,
故答案为:.
【点睛】
本题考查了一次函数的增减性和求自变量的值,熟知一次函数增减性是解题的关键.
三、解答题
1、(1)①y=15-2x;②有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元.
【解析】
【分析】
(1)①等量关系为:车辆数之和=15,由此可得出x与y的关系式;
②由题意,列出不等式组,求出x的取值范围,即可得到答案;
(2)总利润为:装运A种水果的车辆数×10×800+装运B种水果的车辆数×8×1200+装运C种水果的车辆数×6×1000+运费补贴,然后按x的取值来判定.
【详解】
解:(1)①设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆.
则10x+8y+6(15-x-y)=120,
即10x+8y+90-6x-6y=120,
则y=15-2x;
②根据题意得:
15-2x≥3x≥315-x-(15-2x)≥3,
解得:3≤x≤6.
则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;
(2)w=10×800x+8×1200(15-2x)+6×1000[15-x-(15-2x)]+120×50
=-5200x+150000,
根据一次函数的性质,当x=3时,w有最大值,是-5200×3+150000=134400(元).
应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆.
【点睛】
本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.
2、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.
【解析】
【分析】
(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;
(2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;
②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.
【详解】
解:(1)∵B(0 ,3),
∴OB=3,
∵OB=CD,且OD=2OC,
∴OC=1,OD=2,
∴C(-1 ,0),D(2 ,0);
故答案为:(-1 ,0),(2 ,0);
(2)①过点F作FP⊥轴于点P,
∵∠PBF=∠BCO,BF=BC,
又∠FPB=∠BOC=90°,
∴△FPB≌△BOC(AAS),
∴FP=BO=3,PB= OC=1,
∴PO=4,
∴F(-3 ,4);
②过点F作FQ⊥BE于点Q,
∵∠CBO+∠BCO=90°,∠PBF=∠BCO,
∴∠CBO+∠PBF=90°,则∠CBF=90°,
由折叠的性质得:∠EBC=∠OBC,EB=BO=3,
∴∠EBC +∠EBF=90°,
∴∠EBF=∠PBF,即FB是∠PBE的角平分线,
又FQ⊥BE,FP⊥轴,
∴FQ= FP=3,
∴△BEF的面积为BEFQ=.
【点睛】
本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.
3、(1),;(2)
【解析】
【分析】
(1)将点代入直线确定m,再将点C代入即可确定n的值;
(2)利用函数解析式可得:,,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.
【详解】
解:(1)∵点在直线上,
,
,
在直线上,
,
,
,;
(2)由题意得:,
对于直线,令,得,
,
对于直线,令,得,
,
,
,
,
,
,
∴t的值为6.
【点睛】
题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键.
4、(1)见解析;(2)(0,)
【解析】
【分析】
(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;
(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.
【详解】
解:(1)如图,点P即为所求;
(2)∵A的坐标(0,6),点B的坐标(3,0),
∴OA=6,OB=3,
∴PA=PB=OA-OP=6-OP,
∵PB2-OP2=OB2,
∴(6-OP)2-OP2=32,
解得OP=,
∴点P的坐标为(0,).
【点睛】
本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.
5、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
【解析】
【分析】
(1)根据平方的非负性,求得,即可求解;
(2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
(3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
【详解】
解:(1)∵
∴∵,
∴m-6=0,n-2=0
∴m=6,n=2
∴B(-6,0),C(2,0)
(2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
∴∠OAC=∠OBE
∴△OAC≌△OBE(AAS)
∴OC=OE=2
①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
(3)当t=6时,BP=12
∴OB=OP=6
①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
∴∠FME=∠FNP=90°
∵∠MFN=∠EFP=90°
∴∠MFE=∠NFP∵FE=FP
∴
∴ME=NP,FM=FN
∴MO=ON
∴2+EM=6-NP
∴ON=4
∴F(4,4)
②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
∴∠FGE=∠FHP=90°
∵∠GFH=∠EFP=90°
∴∠GFE=∠HFP
∵FE=FP
∴
∴FG=FH, GE=HP
∴HF=OG,FG=OH
∴2+OG=6-OH
∴OG=OH=2
∴F(2,-2)
【点睛】
此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.
数学八年级下册第十四章 一次函数综合与测试同步训练题: 这是一份数学八年级下册第十四章 一次函数综合与测试同步训练题,共24页。试卷主要包含了点A个单位长度.,一次函数y=等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试精练: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试精练,共27页。试卷主要包含了点A个单位长度.等内容,欢迎下载使用。
初中北京课改版第十四章 一次函数综合与测试同步测试题: 这是一份初中北京课改版第十四章 一次函数综合与测试同步测试题,共25页。试卷主要包含了已知一次函数与一次函数中,函数,函数的图象如下图所示等内容,欢迎下载使用。