搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十四章一次函数章节测试试卷(无超纲带解析)

    2022年最新精品解析京改版八年级数学下册第十四章一次函数章节测试试卷(无超纲带解析)第1页
    2022年最新精品解析京改版八年级数学下册第十四章一次函数章节测试试卷(无超纲带解析)第2页
    2022年最新精品解析京改版八年级数学下册第十四章一次函数章节测试试卷(无超纲带解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共25页。试卷主要包含了点P在第二象限内,P点到x等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
    A.m≤﹣B.m≥﹣C.m<﹣D.m>
    2、如图,直线与分别交轴于点,,则不等式的解集为( ).
    A.B.C.D.或
    3、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
    若温度的变化是均匀的,则18分钟时的温度是( )
    A.62℃B.64℃C.66℃D.68℃
    4、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
    A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2
    5、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )
    A.①③B.①④C.①②③D.①③④
    6、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )
    A.k1>k2>k3>k4B.k1>k2>k4>k3
    C.k2>k1>k3>k4D.k4>k3>k2>k1
    7、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
    A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)
    8、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )
    A.y=n(+0.6)B.y=n()+0.6
    C.y=n(+0.6)D.y=n()+0.6
    9、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2)B.(0,0)C.(2,﹣2)D.(﹣2,2)
    10、下列函数中,y随x的增大而减小的函数是( )
    A.B.y=6﹣2xC.D.y=﹣6+2x
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
    2、数形结合是解决数学问题常用的思想方法之一.如图,直线y=2x和直线y=ax+b相交于点A,则方程组的解为______.
    3、点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,则k=_____.
    4、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
    5、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.
    (1)小红、小华谁的速度快?
    (2)出发后几小时两人相遇?
    (3)A,B两地离学校分别有多远?
    2、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.
    (1)三人间、双人间普通客房各住了多少间?
    (2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;
    (3)在直角坐标系内画出这个函数图象;
    (4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?
    3、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.
    (1)直接写出△ABC的形状 ;
    (2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°
    ① 如图1,当点E与点C重合时,求AD的长;
    ② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;
    4、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
    (1)求证:点A为线段BC的中点.
    (2)求点D的坐标.
    5、如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,直线与直线相交于点
    (1)求m,n的值;
    (2)直线与x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.
    【详解】
    解:函数值y随自变量x的增大而减小,那么1+2m<0,
    解得m<.
    故选:C.
    【点睛】
    本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.
    2、C
    【解析】
    【分析】
    观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
    【详解】
    解:由图象可得,
    当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
    当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
    当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
    当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
    故选:C.
    【点睛】
    本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
    3、B
    【解析】
    【分析】
    根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
    【详解】
    解:根据图表可得:温度与时间的关系符合一次函数关系式,
    设温度T与时间x的函数关系式为:,将,,代入解析式可得:

    解得:,
    ∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
    当时,

    故选:B.
    【点睛】
    题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
    4、A
    【解析】
    【分析】
    先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
    【详解】
    解:∵一次函数y=mx+n的图象经过第一、二、四象限,
    ∴m0
    ∴y随x增大而减小,
    ∵1,小华的速度快.
    (2)由横坐标看出,出发后h两人相遇.
    (3)由纵坐标看出A地距学校500m,B地距学校200m.
    【点睛】
    本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
    2、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元
    【解析】
    【分析】
    ①分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;
    ②根据收费列出表达式整理即可;
    ③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.
    【详解】
    解:(1)设租住三人间m间,双人间n间,根据题意

    解得,
    ∴三人间8间,双人间13间;
    (2)双人间住了(50﹣x)人,
    根据题意y=[50x+70(50﹣x)]×50%
    即y=﹣10x+1750(0≤x<50,且x为整数);
    (3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数
    因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)
    (4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元.
    【点睛】
    本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.
    3、(1)等腰三角形,证明见解析;(2)①;②
    【解析】
    【分析】
    (1)先证明 再证明 从而可得答案;
    (2)① 先证明是等边三角形,可得 再证明
    再利用含的直角三角形的性质求解 从而可得答案;②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:证明△CDF是等边三角形, 再证明△ACD≌△EFD(AAS), 可得AC=EF,再求解BD=,CF=CD=, 再求解OE=, 从而可得答案.
    【详解】
    解:(1) ,

    解得:
    A(,0),B(b,0),C(3,0),


    是等腰三角形.
    (2)① ∠ACB=120°,∠ADE=60°,

    是等边三角形,







    ②在CE上取点F,使CF=CD,连接DF,记的交点为K,如图所示:
    ∵AC=BC,∠ACB=120°,
    ∴∠ACO=∠BCO=60°,
    ∴△CDF是等边三角形,
    ∴∠CFD=60°,CD=FD,
    ∴∠EFD=120°,
    ∵∠ACO=∠ADE=60°,
    ∴∠CAD=∠CED,
    又∵∠ACD=∠EFD=120°,
    ∴△ACD≌△EFD(AAS),
    ∴AC=EF, 由(1)得:c=3, ∴OC=3,
    ∵∠AOC=90°,∠ACO=60°,
    ∴∠OAC=30°,
    ∴BC=AC=2OC=6,EF=AC=6,
    ∵CD=2BD, ∴BD=,CF=CD=,
    ∴CE=EF+CF=,
    ∴OE=CE-OC=,

    【点睛】
    本题考查的是算术平方根的非负性,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形的性质,图形与坐标,线段垂直平分线的性质,掌握以上知识是解题的关键.
    4、(1)证明见解析,(2)(8,2).
    【解析】
    【分析】
    (1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
    【详解】
    (1)证明:过点C作CQ⊥OA于Q,
    ∵点B的坐标是,点C的坐标为,
    ∴CQ=OB=4,
    ∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
    ∴△CQA≌△BOA,
    ∴CA=AB,
    ∴点A为线段BC的中点.
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
    ∵,
    ∴∠CRB=∠DSB=∠CBD=90°,
    ∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
    ∴∠CBR=∠SDB,
    ∵,
    ∴∠BCD=∠BDC=45°,
    ∴CB=DB,
    ∴△CRB≌△BSD,
    ∴CR=SB,RB=DS,
    ∵点B的坐标是,点C的坐标为,
    ∴CR=SB=6,RB=DS=8,
    ∴OS=SB-OB=2,
    点D的坐标为(8,2).
    【点睛】
    本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
    5、(1),;(2)
    【解析】
    【分析】
    (1)将点代入直线确定m,再将点C代入即可确定n的值;
    (2)利用函数解析式可得:,,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.
    【详解】
    解:(1)∵点在直线上,


    在直线上,


    ,;
    (2)由题意得:,
    对于直线,令,得,

    对于直线,令,得,






    ∴t的值为6.
    【点睛】
    题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键.
    时间/分钟
    0
    5
    10
    15
    20
    25
    温度/℃
    10
    25
    40
    55
    70
    85
    普通间(元/人/天)
    豪华间(元/人/天)
    贵宾间(元/人/天)
    三人间
    50
    100
    500
    双人间
    70
    150
    800
    单人间
    100
    200
    1500

    相关试卷

    北京课改版八年级下册第十四章 一次函数综合与测试练习:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试练习,共24页。试卷主要包含了正比例函数y=kx的图象经过一等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试课时作业:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试课后测评:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共24页。试卷主要包含了下列命题中,真命题是,下列命题为真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map