2021学年第十四章 一次函数综合与测试课后复习题
展开京改版八年级数学下册第十四章一次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
2、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )
A.﹣1 B.0 C.1 D.2
3、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
4、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
5、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )
A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
6、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
7、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )
A. B. C. D.
8、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )
A.y=x B.y=x C.y=2x D.y=-2x
9、直线y=2x-1不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )
A.100 m/min,266m/min B.62.5m/min,500m/min
C.62.5m/min,437.5m/min D.100m/min,500m/min
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.
2、如图,在平面直角坐标系中,,点,的坐标分别是,,则点的坐标是______.
3、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.
4、如图,函数和的图象相交于,则不等式的解集为____.
5、点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,则k=_____.
三、解答题(5小题,每小题10分,共计50分)
1、实际情境:甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米,小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.
数学研究:如图,折线、分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图像.
(1)求线段AB对应的函数表达式;
(2)求点E的坐标;
(3)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?
2、如图,把长方形纸片OABC放入直角坐标系中,使OA,OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在点D,CD交x轴于点E,已知CB=8,AB=4
(1)求AC所在直线的函数关系式;
(2)求点E的坐标和△ACE的面积;
(3)坐标轴上是否存在点P(不与A、C、E重合),使得△CEP的面积与△ACE的面积相等,若存在请直接写出点P的坐标.
3、如图1,直线与轴交于点,与轴交于点,点与点关于轴对称.
(1)求直线的函数表达式;
(2)设点是轴上的一个动点,过点作轴的平行线,交直线于点,交直线于点,连接.
①若,请直接写出点的坐标 ;
②若的面积为,求出点的坐标 ;
③若点为线段的中点,连接,如图2,若在线段上有一点,满足,求出点的坐标.
4、我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据.
x(厘米) | 1 | 2 | 4 | 8 |
y(斤) | 0.75 | 1.00 | 1.50 | 2.5 |
(1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?
(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?
5、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
(1)求的面积;
(2)在图中作出关于轴的对称图形;
(3)写出点,的坐标.
-参考答案-
一、单选题
1、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
2、A
【解析】
【分析】
用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.
【详解】
解:把点(0,1)和(1,3)代入y=ax+b,得:,
解得,
∴b﹣a=1﹣2=﹣1.
故选:A.
【点睛】
本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.
3、A
【解析】
【分析】
先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
【详解】
解:∵一次函数y=−2x+1中,k=−2<0,
∴y随着x的增大而减小.
∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
4、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
5、B
【解析】
【分析】
观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
【详解】
解:点的运动规律是每运动四次向右平移四个单位,
,
动点第2021次运动时向右个单位,
点此时坐标为,
故选:B.
【点睛】
本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
6、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
7、D
【解析】
【分析】
由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
【详解】
解:∵一次函数y=-x+2中,
令x=0得:y=2;令y=0,解得x=5,
∴B的坐标是(0,2),A的坐标是(5,0).
若∠BAC=90°,如图1,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,,
∴△ABO≌△CAE(AAS),
∴OB=AE=2,OA=CE=5,
∴OE=OA+AE=2+5=7.
则C的坐标是(7,5).
设直线BC的解析式是y=kx+b,
根据题意得:,解得,
∴直线BC的解析式是y=x+2.
故选:D.
【点睛】
本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
8、D
【解析】
【分析】
把点(-1,2)代入正比例函数y=mx即可求解.
【详解】
解:∵正比例函数y=mx的图象经过点(-1,2),
∴-m=2,
∴m=-2,
∴这个函数解析式为y=-2x.
故选:D
【点睛】
本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.
9、B
【解析】
【分析】
根据一次函数的图象特点即可得.
【详解】
解:一次函数的一次项系数,常数项,
直线经过第一、三、四象限,不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.
10、D
【解析】
【分析】
根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.
【详解】
解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;
公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.
故选:D.
【点睛】
本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
二、填空题
1、
【解析】
【分析】
观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集.
【详解】
解:根据图象可知,不等式的解集为.
故答案为:.
【点睛】
本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.
2、
【解析】
【分析】
如图,过作于 证明轴,则轴, 再利用等腰三角形的性质求解 利用勾股定理求解 从而可得答案.
【详解】
解:如图,过作于
轴,则轴,
故答案为:
【点睛】
本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.
3、二
【解析】
【分析】
根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.
【详解】
解:∵直线y=ax﹣1与直线y=2x+1平行,
∴ a=2,
∴直线y=ax﹣1的解析式为y=2x﹣1
∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;
故答案为:二.
【点睛】
本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.
4、
【解析】
【分析】
观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集.
【详解】
解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,
即当时,.
∴不等式的解集为,
故答案为:.
【点睛】
本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、﹣2
【解析】
【分析】
把点P(2,﹣4)代入正比例函数y=kx中可得k的值.
【详解】
解:∵点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,
∴﹣4=2×k,
解得:k=﹣2,
故答案为:﹣2.
【点睛】
本题考查了用待定系数法求正比例函数解析式,经过函数的某点一定在函数的图象上,理解正比例函数的定义是解题的关键.
三、解答题
1、(1);(2);(3)或
【解析】
【分析】
(1)利用待定系数法求线段AB对应的函数表达式即可;
(2)设DE对应的函数表达式为,根据k的几何意义可,将点D坐标代入求得b',再与线段AB解析式联立方程组求出交点E坐标即可;
(3)利用待定系数法求线段AD对应的函数解析式,分y1=2y3和y1=2y2求解x值即可.
【详解】
解:(1)设线段AB对应的函数表达式为,
由图像得,当时,,当时,,代入得:,
解得:,
∴线段AB对应的函数表达式为(0≤x≤2);
(2)设线段DE对应的函数表达式为,
由题意得,,
将代入,得,
∴线段DE对应的函数表达式为,
∵点E是线段AB和线段DE的交点,故E满足:
,解得:,
∴;
(3)设线段AD对应的函数表达式为,
将A(0,4)、代入,得:,
解得:,
∴设AD对应的函数表达式为,
由题意,分两种情况:
当y=2y3时,由-2x+4=2(-8x+4)得:;
当y=2y2时,由-2x+4=2(16x-8)得:,
故当或时,它离乙的路程与它离甲的路程相等.
【点睛】
本题考查一次函数的应用、待定系数法求一次函数表达式,理解题意,理清图象中各点、各线段之间的关系是解答的关键.
2、(1)y=;(2)E(3,0),10;(3)P1(-2,0),P2(0,),P3(0,-).
【解析】
【分析】
(1)先求出A、C的坐标,然后用待定系数法求解即可;
(2)先证明CE=AE;设CE=AE=x,则OE=8-x,在直角△OCE中,OC2+OE2=CE2,则,求出x得到OE的长即可求解;
(3)分P在x轴上和y轴上两种情况讨论求解即可.
【详解】
解:(1)∵OA,OC分别落在x轴、y轴的正半轴上,CB=8,AB=4.
∴A(8,0)、C(0,4),
设直线AC解析式为y=kx+b,
∴,
解得:,
∴AC所在直线的函数关系式为y=;
(2)∵长方形OABC中,BC∥OA,
∴∠BCA=∠CAO,
又∵∠BCA=∠ACD,
∴∠ACD=∠CAO,
∴CE=AE;
设CE=AE=x,则OE=8-x,在直角△OCE中,OC2+OE2=CE2,
则,
解得:x=5;
则OE=8-5=3,
则E(3,0),
∴S△ACE=×5×4=10;
(3)如图3-1所示,当P在x轴上时,
∵,
∴,
∴,
∵E点坐标为(3,0),
∴P点坐标为(-2,0)或(8,0)(舍去,与A点重合)
如图3-2所示,当P在y轴上时,
同理可得,
∴,
∵C点坐标为(0,4),
∴P点坐标为(0,)或(0,);
综上所述,坐标轴上是在点P(-2,0)或(0,)或(0,)使得△CEP的面积与△ACE的面积相等.
【点睛】
本题主要考查了求一次函数解析式,三角形面积,坐标与图形,勾股定理与折叠,等腰三角形的性质与判定,平行线的性质等等,解题的关键在于鞥个熟练掌握相关知识进行求解.
3、(1);(2)①,;②点的坐标为,或,;③点F的坐标,.
【解析】
【分析】
(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;
(2)①设点M(m,0),则点P(m,),则,由B(0,3),C(6,0),则,,,再由勾股定理得,,则,由此求解即可;
②设点, ,点在直线上,,,,进行求解即可;
③过点作交于,过点作轴于,根据,是等腰直角三角形,再证,得出,,根据点为线段的中点,,求出,设,则, 待定系数法求直线的解析式为,点在上,,,代入得方程解方程即可.
【详解】
(1)对于,令,,
,
令,
,
,
,
点与点A关于轴对称,
,
设直线的解析式为,
,
,
直线的解析式为;
(2)①设点,
,
,,
,,,
,
是直角三角形,
,
,
,
,
故答案为:;
②设点,
点在直线上,
,
点在直线上,
,
,
的面积为,
,
,
,或,;
③过点作交于,过点作轴于,
,
是等腰直角三角形,
,,
,
,
,
,
,,
点为线段的中点,,
,,
设,则,,则,,
,,
设直线的解析式为,
,
解得:,
直线的解析式为,
点在上,,,
,
解得:,
点的坐标为,.
【点睛】
本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式.
4、(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13
【解析】
【分析】
(1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;
(2)把把x=50代入解析式,求出最大物重即可确定范围.
【详解】
解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数,
设x,y的函数关系式:y=kx+b,
∵当x=2时,y=1;x=4时,y=1.5;
∴,
解得k=,b=,
∴x,y的函数关系式:y=x+,
把x=16代入:y=x+,
得y=4.5,
∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;
(2)把x=50代入y=x+,
得y=13,
∴0≤y≤13,
∴这杆秤的可称物重范围是0≤y≤13.
【点睛】
本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键.
5、(1);(2)见解析;(3)A1(1,5),C1(4,3)
【解析】
【分析】
(1)根据三角形面积公式进行计算即可得;
(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;
(3)根据(2)即可写出.
【详解】
解:(1)
(2)如下图所示:
(3)A1(1,5);C1(4,3)
【点睛】
本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.
初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共27页。试卷主要包含了点在,已知点P,已知点,若点在第三象限,则点在.,,两地相距80km,甲等内容,欢迎下载使用。
2021学年第十四章 一次函数综合与测试巩固练习: 这是一份2021学年第十四章 一次函数综合与测试巩固练习,共27页。试卷主要包含了若一次函数y=kx+b,已知点,一次函数y=等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试达标测试: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共26页。试卷主要包含了在下列说法中,能确定位置的是等内容,欢迎下载使用。