2020-2021学年第十四章 一次函数综合与测试当堂检测题
展开京改版八年级数学下册第十四章一次函数专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3 B.-1 C.2 D.4
2、变量,有如下关系:①;②;③;④.其中是的函数的是( )
A.①②③④ B.①②③ C.①② D.①
3、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
4、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
5、已知为第四象限内的点,则一次函数的图象大致是( )
A. B.
C. D.
6、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
7、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为( )
A. B. C. D.无法确定
9、若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为( )
A.x<0 B.x>0 C.x>1 D.x<1
10、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,,点,的坐标分别是,,则点的坐标是______.
2、在平面直角坐标系中,点A(1,4),B(4,2),C(m,﹣m).当以点A、B、C为顶点构成的△ABC周长最小时,m的值为______.
3、函数的定义域是 _____.
4、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.
5、一次函数与的图象如图所示,则关于、的方程组的解是______.
三、解答题(5小题,每小题10分,共计50分)
1、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:
(1)在上升或下降过程中,无人机的速度为多少?
(2)图中a表示的数是 ;b表示的数是 ;
(3)无人机在空中停留的时间共有 分钟.
2、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
(1)如图1,求点B、C的坐标;
(2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.
3、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB.
(1)求两个函数的解析式;
(2)求△AOB的面积.
4、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
5、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
-参考答案-
一、单选题
1、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
2、B
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.
【详解】
解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
④,当时,,则y不是x的函数;
综上,是函数的有①②③.
故选:B.
【点睛】
本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.
3、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
4、A
【解析】
【分析】
先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
【详解】
解:∵一次函数y=−2x+1中,k=−2<0,
∴y随着x的增大而减小.
∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
5、A
【解析】
【分析】
根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.
【详解】
解:∵为第四象限内的点,
∴ ,
∴ ,
∴一次函数的图象经过第一、二、三象限.
故选:A
【点睛】
本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.
6、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
7、C
【解析】
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
8、A
【解析】
【分析】
根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.
【详解】
解:由图象及题意得:
∵直线y=kx+b和y=mx+n交于点A(﹣2,3),
∴方程组的解为.
故选:A.
【点睛】
本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.
9、D
【解析】
【分析】
利用函数的增减性和x=1时的函数图像上点的位置来判断即可.
【详解】
解:如图所示:k>0,函数y= kx+b随x的增大而增大,直线过点B(1,1),
∵当x=1时,kx+b=1,即kx+b-1=0,
∴不等式kx+b﹣1<0的解集为:x<1.
故选择:D.
【点睛】
此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.
10、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
二、填空题
1、
【解析】
【分析】
如图,过作于 证明轴,则轴, 再利用等腰三角形的性质求解 利用勾股定理求解 从而可得答案.
【详解】
解:如图,过作于
轴,则轴,
故答案为:
【点睛】
本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.
2、
【解析】
【分析】
作B点关于直线y=﹣x的对称点B',连接AB',则有BC=B'C,所以△ABC周长最小值为AB+AB'的长,求出直线直线AB'的解析式为y=x+,联立方程组,可求C点坐标.
【详解】
解:∵C(m,﹣m),
∴点C在直线y=﹣x上,
作B点关于直线y=﹣x的对称点B',连接AB',
∵BC=B'C,
∴BC+AC=B'C+AC≥AB',
∴△ABC周长=AB+BC+AC=AB+B'C+AC≥AB+AB',
∴△ABC周长最小值为AB+AB'的长,
∵B(4,2),
∴B'(﹣2,﹣4),
∵A(1,4),
设直线AB'的解析式为y=kx+b,
∴,
∴,
y=x+,
联立方程组,
解得,
∴C(﹣,),
∴m=﹣,
故答案为:﹣.
【点睛】
本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,掌握待定系数法求函数解析式的方法是解题的关键.
3、x≠0
【解析】
【分析】
由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.
【详解】
解:函数的定义域是:x≠0.
故答案为:x≠0.
【点睛】
本题考查求函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
4、7
【解析】
【分析】
由题意得,,,即可得.
【详解】
解:由题意得,,,
则,
故答案为:7.
【点睛】
本题考查了点的坐标特征,解题的关键是理解题意.
5、
【解析】
【分析】
根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解
【详解】
解:∵一次函数与的图象交点的横坐标为,
∴当,
是方程组的解
故答案为:
【点睛】
本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键.
三、解答题
1、(1)无人机的速度为25米/分;(2)2;15;(3)9.
【解析】
【分析】
(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;
(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;
(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.
【详解】
解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,
∴无人机的速度为75-50=25米/分;
(2)由题意得:,,
故答案为:2,15;
(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,
故答案为:9
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.
2、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
【解析】
【分析】
(1)根据平方的非负性,求得,即可求解;
(2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
(3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
【详解】
解:(1)∵
∴∵,
∴m-6=0,n-2=0
∴m=6,n=2
∴B(-6,0),C(2,0)
(2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
∴∠OAC=∠OBE
∴△OAC≌△OBE(AAS)
∴OC=OE=2
①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
(3)当t=6时,BP=12
∴OB=OP=6
①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
∴∠FME=∠FNP=90°
∵∠MFN=∠EFP=90°
∴∠MFE=∠NFP∵FE=FP
∴
∴ME=NP,FM=FN
∴MO=ON
∴2+EM=6-NP
∴ON=4
∴F(4,4)
②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
∴∠FGE=∠FHP=90°
∵∠GFH=∠EFP=90°
∴∠GFE=∠HFP
∵FE=FP
∴
∴FG=FH, GE=HP
∴HF=OG,FG=OH
∴2+OG=6-OH
∴OG=OH=2
∴F(2,-2)
【点睛】
此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.
3、(1)y=x,;(2)7.5
【解析】
【分析】
(1)根据A的坐标先求出正比例函数的解析式,再根据已知条件求出点B的坐标,进而可得一次函数解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
【详解】
解:(1)∵A(3,4),
∴OA=,
∴OB= OA=5
∴ B(-5,0)
设正比例函数的解析式为y=mx,∵正比例函数的图象过A(3,4)
∴4=3m,m=,
∴正比例函数的解析式为y=x;
设一次函数的解析式为y=kx+b,
∵过A(3,4)、B(-5,0)
∴.
解得:.
∴一次函数的解析式为;
(2)∵A(3,4),B(-5,0),
∴三角形AOB的面积为5×3×=7.5.
【点睛】
主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.
4、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)
【解析】
【分析】
先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.
【详解】
解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:
故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).
【点睛】
本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.
5、(1)证明见解析,(2)(8,2).
【解析】
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
2020-2021学年第十四章 一次函数综合与测试测试题: 这是一份2020-2021学年第十四章 一次函数综合与测试测试题,共23页。试卷主要包含了下列命题中,真命题是,在下列说法中,能确定位置的是,已知点A等内容,欢迎下载使用。
2021学年第十四章 一次函数综合与测试当堂达标检测题: 这是一份2021学年第十四章 一次函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,一次函数y=kx+b,一次函数y=,,两地相距80km,甲等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步测试题: 这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步测试题,共25页。