2021学年第十四章 一次函数综合与测试同步练习题
展开京改版八年级数学下册第十四章一次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、正比例函数y=kx的图象经过一、三象限,则一次函数y=﹣kx+k的图象大致是( )
A. B.
C. D.
2、若直线y=kx+b经过第一、二、三象限,则函数y=bx﹣k的大致图象是( )
A. B. C. D.
3、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3 B.-1 C.2 D.4
4、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
5、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )
A.﹣1 B.0 C.1 D.2
6、一次函数y=kx-m,y随x的增大而增大,且km<0,则在坐标系中它的大致图象是( )
A. B.
C. D.
7、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y<0 B.y>0 C.y<3 D.y>3
8、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )
A.小于12件 B.等于12件 C.大于12件 D.不低于12件
10、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,公园的位置是_______,车站的位置是_______,学校的位置是_______.
2、写出一个一次函数,使其函数值随着自变量的值的增大而增大:______.
3、已知一次函数的图象经过点和,则_______(填“>”“<”或“=”)
4、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为___________.
5、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.
三、解答题(5小题,每小题10分,共计50分)
1、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?
2、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
(1)求的面积;
(2)在图中作出关于轴的对称图形;
(3)写出点,的坐标.
3、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.
4、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两人恰好同时到家.张明和爸爸在整个过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示.
(1)的值为______;
(2)张明开始返回时与爸爸相距______米;
(3)第______分钟吋,两人相距900米.
5、利用几何图形研究代数问题是建立几何直观的有效途径.
(1)如图①,点A的坐标为(4,6),点B为直线y=x在第一象限的图象上一点,坐标为(b,b).
①AB2可表示为 ;(用含b的代数式表示)
②当AB长度最小时,求点B的坐标.
(2)借助图形,解决问题:对于给定的两个数x,y,求使(x﹣b)2+(y﹣b)2达到最小的b.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况.
【详解】
解:∵正比例函数y=kx的图象经过一、三象限
∴
∴
∴一次函数的图象经过一、二、四象限
故选:A
【点睛】
本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键.
2、D
【解析】
【分析】
直线y=kx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.
【详解】
解:直线y=kx+b经过第一、二、三象限,则,
时,函数y=bx﹣k的图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.
3、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
4、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
5、A
【解析】
【分析】
用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.
【详解】
解:把点(0,1)和(1,3)代入y=ax+b,得:,
解得,
∴b﹣a=1﹣2=﹣1.
故选:A.
【点睛】
本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.
6、B
【解析】
【分析】
根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解.
【详解】
解:一次函数y=kx-m,y随x的增大而增大,可得,
,可得,
则一次函数y=kx-m,经过一、三、四象限,
故选:B
【点睛】
本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号.
7、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
8、D
【解析】
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
9、C
【解析】
【分析】
根据图象找出在的上方即收入大于成本时,x的取值范围即可.
【详解】
解:根据函数图象可知,当时,,即产品的销售收入大于销售成本,该公司盈利.
故选:C.
【点睛】
本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键.
10、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
二、填空题
1、 (4,4); (-2,-3); (4,-2)
【解析】
【分析】
用点坐标表示位置.
【详解】
①在直角坐标系中查横坐标为,纵坐标为;得到公园的位置为
故答案为:.
②在直角坐标系中查横坐标为,纵坐标为;得到车站的位置为
故答案为:.
③在直角坐标系中查横坐标为,纵坐标为;得到学校的位置为
故答案为:.
【点睛】
本题考察了坐标系中点的坐标.解题的关键在于正确的找出横、纵坐标的值.
2、(答案不唯一)
【解析】
【分析】
根据其函数值随着自变量的值的增大而增大,可得该一次函数的自变量系数大于0,即可求解.
【详解】
解:∵其函数值随着自变量的值的增大而增大,
∴该一次函数的自变量系数大于0,
∴该一次函数解析式为.
故答案为:(答案不唯一)
【点睛】
本题主要考查了一次函数的性质,求函数值,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
3、>
【解析】
【分析】
根据一次函数的性质,当k<0时,y随x的增大而减小,判断即可.
【详解】
∵一次函数的图象经过点和,且k<0,
∴k<0,
∵-2<3,
∴>,
故答案为:>.
【点睛】
本题考查了一次函数的基本性质,灵活运用性质是解题的关键.
4、5
【解析】
【分析】
首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出△AOB的面积.
【详解】
解:如图所示,
过A点作AD垂直x轴于D点,则h=2,
∴.
故答案为:5.
【点睛】
本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可.
5、
【解析】
【分析】
直接利用已知点坐标得出原点位置,进而得出答案.
【详解】
解:如图所示,建立平面直角坐标系,
∴轰炸机C的坐标为(-1,-2),
故答案为:(-1,-2).
【点睛】
此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
三、解答题
1、东经度,南纬度可以表示为.
【解析】
【分析】
根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.
【详解】
解:由题意可知东经度,南纬度,可用有序数对表示.
故东经度,南纬度表示为.
【点睛】
本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.
2、(1);(2)见解析;(3)A1(1,5),C1(4,3)
【解析】
【分析】
(1)根据三角形面积公式进行计算即可得;
(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;
(3)根据(2)即可写出.
【详解】
解:(1)
(2)如下图所示:
(3)A1(1,5);C1(4,3)
【点睛】
本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.
3、作图见解析,点,点,点
【解析】
【分析】
分别作出A,B,C的对应点,,即可.
【详解】
解: 如图所示.
点,点,点.
【点睛】
本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.
4、(1)3000;(2);(3)18或
【解析】
【分析】
(1)根据一次函数图象,两人同时从家出发后的速度一致,根据张明的路程除以时间即可求得速度,根据题意,即可求得的值;
(2)根据(1)中的值代入函数解析式,求得,根据图象求得,根据题意求得当时,的值即可求解;
(3)分两种情况讨论,①当张明的爸爸返回时,张明继续跑,和张明返回时,②根据(2)的结论令,解方程即可求解
【详解】
解:(1)米每分钟
根据题意张明继续前行,5分钟后也原路返回,
故答案为:;
(2)设
将代入,将点代入,
得
解得,
根据题意时,
(米)
故答案为:1500;
(3)①当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为,将代入,即
解得
即
解得
②两人都返回时,则
解得
第30分钟时,两人相距900米
故答案为:18或30
【点睛】
本题考查了一次函数的应用,根据函数图象获取信息是解题的关键.
5、(1)①2b2﹣20b+52;②B(5,5);(2)(x+y)
【解析】
【分析】
(1)①由平面直角坐标系中两点间距离公式可直接得到;
②利用配方法及平方的非负性可求得最小值;
(2)由“垂线段最短”可求得最小值.
【详解】
解:(1)①∵点A的坐标为(4,6),点B坐标为(b,b),
∴AB2=(4﹣b)2+(6﹣b)2=2b2﹣20b+52;
故答案为:2b2﹣20b+52.
②AB2=2b2﹣20b+52=2(b﹣5)2+2,
∵(b﹣5)2≥0,
∴当(b﹣5)2=0时,即b=5时,AB最小,
此时B(5,5);
(2)如图,设A(x,y),B(b,b),则点B在直线y=x上,欲求(x﹣b)2+(y﹣b)2的最小值,只要在直线y=x上找到一点B′(b0,b0),使得AB的值最小即可.
根据垂线段最短可知,当AB′⊥直线y=x时,(x﹣b)2+(y﹣b)2的有最小值.
∵(x﹣b)2+(y﹣b)2
=(x﹣b0+b0﹣b)2+(y﹣b0+b0﹣b)2
=[(x﹣b0)2+(y﹣b0)2]+2[(x﹣b0)+(y﹣b0)](b0﹣b)+2(b0﹣b)2,
由图,我们可以把(x﹣b)2+(y﹣b)2看作AB2,(x﹣b0)2+(y﹣b0)2看作AB′2,2(b0﹣b)2可以看作BB′2,
由勾股定理可知:2[(x﹣b0)+(y﹣b0)](b0﹣b)=0,
∴x﹣b0+y﹣b0=0,
∴b0=(x+y).
即使(x﹣b)2+(y﹣b)2达到最小的b为(x+y).
【点睛】
本题考查勾股定理,规律型问题,两点之间距离公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
北京课改版八年级下册第十四章 一次函数综合与测试练习: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试练习,共24页。试卷主要包含了正比例函数y=kx的图象经过一等内容,欢迎下载使用。
数学第十四章 一次函数综合与测试同步达标检测题: 这是一份数学第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试课后测评: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共24页。试卷主要包含了下列命题中,真命题是,下列命题为真命题的是等内容,欢迎下载使用。