初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题
展开京改版八年级数学下册第十四章一次函数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
2、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是( )
A. B. C. D.
3、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )
A. B. C. D.
4、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>
5、下面哪个点不在函数的图像上( ).
A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)
6、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
7、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )
A.k1>k2>k3>k4 B.k1>k2>k4>k3
C.k2>k1>k3>k4 D.k4>k3>k2>k1
8、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
9、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )
A. B. C. D.
10、如图,每个小正方形的边长为1,在阴影区域的点是( )
A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知y与成正比例,且当时,,则y与x之间的函数关系式为______________.
2、数形结合是解决数学问题常用的思想方法之一.如图,直线y=2x和直线y=ax+b相交于点A,则方程组的解为______.
3、如果 ,y=2,那么x = ______
4、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是______.
5、点A为直线上的一点,且到两坐标轴距离相等,则A点坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数.
(1)画出函数图象.
(2)不等式>0的解集是_______;不等式<0的解集是_______.
(3)求出函数图象与坐标轴的两个交点之间的距离.
2、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.
(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;
(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.
3、如图,直线y1=﹣x+1与直线y2=2x﹣3交于点P,它们与y轴分别交于点A、B.
(1)求ABP的面积;
(2)直接写出y1>y2时,x的取值范围;
4、已知是x的正比例函数,且当时,y=2.
(1)请求出y与x的函数表达式;
(2)当x为何值时,函数值y=4;
5、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.
(1)在图中作出DEF,使得DEE与ABC关于x轴对称;
(2)写出D,E两点的坐标:D ,E .
(3)求DEF的面积.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
2、B
【解析】
【分析】
由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.
【详解】
解:∵函数y=ax-3和y=kx的图象交于点P的坐标为(-2,﹣1),
∴关于x,y的二元一次方程组的解是.
故选B.
【点睛】
本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.
3、A
【解析】
【分析】
由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
【详解】
解:过点P作PM⊥OD于点M,
∵长方形的顶点的坐标分别为,点是的中点,
∴点D(5,0)
∵,PM⊥OD,
∴OM=DM
即点M(2.5,0)
∴点P(2.5,4),
故选:A
【点睛】
此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
4、C
【解析】
【分析】
利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.
【详解】
解:函数值y随自变量x的增大而减小,那么1+2m<0,
解得m<.
故选:C.
【点睛】
本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.
5、D
【解析】
【分析】
将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.
【详解】
解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;
B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;
C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;
D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.
6、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
7、A
【解析】
【分析】
首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.
【详解】
解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,
再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.
则k1>k2>k3>k4,
故选:A.
【点睛】
本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.
8、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
9、A
【解析】
【分析】
设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.
【详解】
解:设直线的解析式为 ,
把点,点代入,得:
,解得:,
∴直线的解析式为,
∵将直线向下平移8个单位得到直线,
∴直线的解析式为 ,
∵点关于轴对称的点为 ,
设直线的解析式为 ,
把点 ,点代入,得:
,解得:,
∴直线的解析式为,
将直线与直线的解析式联立,得:
,解得: ,
∴直线与直线的交点坐标为.
故选:A
【点睛】
本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.
10、C
【解析】
【分析】
根据平面直角坐标系中点的坐标的表示方法求解即可.
【详解】
解:图中阴影区域是在第二象限,
A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;
B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;
C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;
D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.
故选:C.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
二、填空题
1、##
【解析】
【分析】
根据题意,可设 ,将时,,代入即可求解.
【详解】
解:根据题意,可设 ,
∵当时,,
∴ ,解得: ,
∴y与x之间的函数关系式为 .
故答案为:
【点睛】
本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意 是解题的关键.
2、
【解析】
【分析】
由直线y=2x求得A的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解.
【详解】
解:∵直线y=2x和直线y=ax+b相交于点A,A的纵坐标为3,
∴3=2x,解得x=,
∴A(,3),
∴方程组的解为.
故答案为:.
【点睛】
本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键.
3、3
【解析】
【分析】
把y=2代入 y=x计算即可.
【详解】
解:∵y=2,
∴2=x,
∴x=3
故答案为:3.
【点睛】
本题考查了正比例函数的问题,做题的关键是掌握将y值代入即可求解.
4、##y=4+2x
【解析】
【分析】
根据一次函数的平移规律:“上加下减,左加右减”来解题即可.
【详解】
由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为,
化简得:,
故答案为:.
【点睛】
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”.
5、,
【解析】
【分析】
根据点A为直线y=−3x−4上的一点,且到两坐标轴距离相等可得出x=|y|,求出x、y的值即可.
【详解】
解:∵点A为直线y=−3x−4上的一点,且到两坐标轴距离相等,
∴|x|=|y|,
∴x=y或x=−y.
当x=y时,−3x−4=x,解得x=−1,
∴A(−1,−1);
当x=−y时,−3x−4=−x,解得x=−2,
∴y=2,
∴A(−2,2);
∴A(−1,−1)或(−2,2).
故答案为:(−1,−1)或(−2,2).
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题
1、(1)见解析;(2)x<-3;x>-3;(3)BC=.
【解析】
【分析】
(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;
(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;
(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)
【详解】
(1)当x=0时,y=-2x-6=-6,
∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);
当y=-2x-6=0时,解得:x=-3,
∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).
描点连线画出函数图象,如图所示.
(2)观察图象可知:当x<-3时,
一次函数y=-2x-6的图象在x轴上方;
当x>-3时,一次函数y=-2x-6的图象在x轴下方.
∴不等式-2x-6>0的解集是x<-3;
不等式-2x-6<0的解集是x>-3.
故答案是:x<-3,x>-3;
(3)∵B(-3,0),C(0,-6),
∴OB=3,OC=6,
∴BC=
【点睛】
本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.
2、(1)见解析;(2)(0,)
【解析】
【分析】
(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;
(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.
【详解】
解:(1)如图,点P即为所求;
(2)∵A的坐标(0,6),点B的坐标(3,0),
∴OA=6,OB=3,
∴PA=PB=OA-OP=6-OP,
∵PB2-OP2=OB2,
∴(6-OP)2-OP2=32,
解得OP=,
∴点P的坐标为(0,).
【点睛】
本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.
3、(1);(2)x<
【解析】
【分析】
(1)根据题意由点的坐标求得相关线段的长度,然后由三角形的面积公式进行解答;
(2)由题意直接根据函数图象进行分析即可直接回答问题.
【详解】
解:(1)当x=0时,y1=1,即A(0,1).
同理,y2=2x﹣3经过点B(0,﹣3).
所以AB=4.
由,得.
所以P(,).
所以△ABP的面积是:AB•|xP|==;
(2)由(1)知,P(,).
由函数图象知,当y1>y2时,x的取值范围是x<.
【点睛】
本题考查一次函数的图象与性质以及两条直线相交或平行的问题.解题时,注意利用“数形结合”的数学思想,使问题变得直观化.
4、(1)y=+1;(2)x=时,y=4.
【解析】
【分析】
(1)根据正比例函数的定义,形如列出函数表达式,代入数值求得,进而求得表达式;
(2)根据的值代入(1),即可求得的值
【详解】
解:(1)是x的正比例函数,
当时,y=2
解得
表达式为:即
(2)由,令
即
解得
x=时,y=4.
【点睛】
本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键.
5、最大588cm
故答案为3,588.
(5)
根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;
当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,
当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,
当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,
当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.
因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.
【点睛】
本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.
2.(1)直线的解析式为;(2);(3)或.
【解析】
【分析】
(1)在中,利用勾股定理确定,由对称设,,,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;
(2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得,即两个三角形的面积相同,使的面积与的面积相同,只需要找到的面积与的面积相同的点即可,设点,两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;
(3)设若直线、与直线夹角等于,由图可得为等腰直角三角形,作于,于,可得,,
利用全等三角形的判定及性质可得,,直线过,直线的解析式为:,设坐标为,则,由各线段间的数量关系可得点坐标为,将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可.
【详解】
解:(1),
,即,
又,
,
设直线的解析式为,将点代入得,
直线的解析式为.
在中,,
点、点关于直线对称,
设,,,
,
在中,,
,
,
将点B代入
直线的解析式为;
(2)由(1)得,BC=OB=3,如图所示:
∵O点关于直线AB的对称点C点在直线AD上,
∴,
∴,
使,
则设点,
两个三角形的高均为线段OA长度,使底相同即:
,
解得:或(舍去),
∴;
(3)如图,设若直线、与直线夹角等于,
即为等腰直角三角形,作于,于,
∴,,
∵,
∴,
∵,
∴,
在与中,
,
∴,
,,
直线过,
即,解得:,
直线的解析式为:,
设坐标为,则,,,
由线段间的关系可得:
点坐标为,
点在直线上,
,
解得:,
,,
当直线过点时,,解得:;
当直线过点时,,解得:;
所以或.
【点睛】
本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键.
3.(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5
【解析】
【分析】
(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;
(2)根据△DEF的位置,即可得出D,E两点的坐标;
(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.
【详解】
解:(1)如图所示,△DEF即为所求;
(2)由图可得,D(﹣1,﹣4),E(﹣4,1);
故答案为:(﹣1,﹣4),(﹣4,1);
(3),
∴面积为9.5.
【点睛】
题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.
2020-2021学年第十四章 一次函数综合与测试测试题: 这是一份2020-2021学年第十四章 一次函数综合与测试测试题,共23页。试卷主要包含了下列命题中,真命题是,在下列说法中,能确定位置的是,已知点A等内容,欢迎下载使用。
初中第十四章 一次函数综合与测试达标测试: 这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。
初中北京课改版第十四章 一次函数综合与测试课后作业题: 这是一份初中北京课改版第十四章 一次函数综合与测试课后作业题,共26页。试卷主要包含了点A个单位长度.,下列命题中,真命题是等内容,欢迎下载使用。