


初中数学北京课改版八年级下册第十四章 一次函数综合与测试一课一练
展开京改版八年级数学下册第十四章一次函数专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
A.正东方向 B.正西方向 C.正南方向 D.正北方向
2、关于函数有下列结论,其中正确的是( )
A.图象经过点
B.若、在图象上,则
C.当时,
D.图象向上平移1个单位长度得解析式为
3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
4、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图像过点A,则不等式2x<kx+b≤0的解集为( )
A.x≤﹣2 B.﹣2≤x<﹣1 C.﹣2<x≤﹣1 D.﹣1<x≤0
5、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
6、关于一次函数y=﹣2x+3,下列结论正确的是( )
A.图象与x轴的交点为(,0)
B.图象经过一、二、三象限
C.y随x的增大而增大
D.图象过点(1,﹣1)
7、直线y=2x-1不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、如图,直线与分别交轴于点,,则不等式的解集为( ).
A. B. C. D.或
9、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
10、已知为第四象限内的点,则一次函数的图象大致是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,函数y=mx+3与y=的图象交于点A(a,2),则方程组的解为______.
2、函数 的定义域是________.
3、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)
4、一次函数y=(m-1)x+2的函数值y随x的增大而增大,则m的取值范围是_____.
5、如图,函数和的图象相交于,则不等式的解集为____.
三、解答题(5小题,每小题10分,共计50分)
1、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.
(1)请你用表格表示气温与音速之间的关系.
(2)表格反映了哪两个变量之间的关系?哪个是自变量?
(3)当气温是35℃时,估计音速y可能是多少?
(4)能否用一个式子来表示两个变量之间的关系?
2、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.
(1)请直接写出C、D两点的坐标:点C ,点D ;
(2)当BF=BC时,连接FE.
①求点F的坐标;
②求此时△BEF的面积.
3、已知函数y=(m-3)x+(m2-9),当m取何值时,y是x的正比例函数?
4、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:
A商场:买一盒大气球,送一盒小气球;
B商场:一律九折优惠;
(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;
(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?
5、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
(1)如图1,求点B、C的坐标;
(2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据二人向同一方向走的距离可知二人的方向关系,解答即可.
【详解】
解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.
【点睛】
本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
2、D
【解析】
【分析】
根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
【详解】
解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
故选D.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
3、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
4、B
【解析】
【分析】
根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.
【详解】
解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),
∴不等式2x<kx+b的解集是x<-1,
∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),
∴不等式kx+b≤0的解集是x≥-2,
∴不等式2x<kx+b≤0的解集是-2≤x<-1,
故选:B.
【点睛】
本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.
5、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
6、A
【解析】
【分析】
利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.
【详解】
解:A.当y=0时,﹣2x+3=0,解得:x=,
∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;
B.∵k=﹣2<0,b=3>0,
∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;
C.∵k=﹣2<0,
∴y随x的增大而减小,选项C不符合题意;
D.当x=1时,y=﹣2×1+3=1,
∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.
故选:A.
【点睛】
本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.
7、B
【解析】
【分析】
根据一次函数的图象特点即可得.
【详解】
解:一次函数的一次项系数,常数项,
直线经过第一、三、四象限,不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.
8、C
【解析】
【分析】
观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
【详解】
解:由图象可得,
当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
故选:C.
【点睛】
本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
9、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
10、A
【解析】
【分析】
根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.
【详解】
解:∵为第四象限内的点,
∴ ,
∴ ,
∴一次函数的图象经过第一、二、三象限.
故选:A
【点睛】
本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.
二、填空题
1、
【解析】
【分析】
把(a,2)代入y=-2x中,求得a值,把交点的坐标转化为方程组的解即可.
【详解】
∵函数y=mx+3与y=的图象交于点A(a,2),
∴-2a=2,
解得a=-1,
∴A(-1,2),
∴方程组的解为,
故答案为:.
【点睛】
本题考查了一次函数的交点与二元一次方程组的关系,正确理解一次函数解析式的交点坐标与由解析式构成的二元一次方程组的解的关系是解题的关键.
2、x≠-1
【解析】
【分析】
根据分母不为零,即可求得定义域.
【详解】
解:由题意,
即
故答案为:
【点睛】
本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.
3、220≤P≤440
【解析】
【分析】
由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.
【详解】
解:三者关系式为:P·R=U²,可得,
把电阻的最小值R=110代入得,得到输出功率的最大值,
把电阻的最大值R=220代入得,得到输处功率的最小值,
即用电器输出功率P的取值范围是220≤P≤440.
故答案为:220≤P≤440.
【点睛】
本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.
4、m>1
【解析】
【分析】
由一次函数的性质可得m-1为正,从而可求得m的取值范围.
【详解】
由题意知,m-1>0
则m>1
故答案为:m>1
【点睛】
本题考查了一次函数的图象与性质,熟悉一次函数的图象与性质是关键.
5、
【解析】
【分析】
观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集.
【详解】
解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,
即当时,.
∴不等式的解集为,
故答案为:.
【点睛】
本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题
1、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+x.
【解析】
【分析】
(1)根据题中数据列出表格.
(2)找出题中的两个变量.
(3)根据传播速度与温度的变化规律进而得出答案.
(4)结合(3)中发现得出两个变量之间的关系.
【详解】
(1)列表如下:
x(℃) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
y(米/秒) | 331 | 334 | 337 | 340 | 343 | 346 | 349 |
(2)两个变量是:传播的速度和温度,温度是自变量.
(3) 根据表格中音速y(米/秒)随着气温x(℃)的变化规律可知,
当气温再增加5℃,音速就相应增加3米/秒,即为349+3=352(米/秒),
当气温是35℃时,估计音速y可能是:352米/秒.
(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+x.
【点睛】
本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键.
2、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.
【解析】
【分析】
(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;
(2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;
②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.
【详解】
解:(1)∵B(0 ,3),
∴OB=3,
∵OB=CD,且OD=2OC,
∴OC=1,OD=2,
∴C(-1 ,0),D(2 ,0);
故答案为:(-1 ,0),(2 ,0);
(2)①过点F作FP⊥轴于点P,
∵∠PBF=∠BCO,BF=BC,
又∠FPB=∠BOC=90°,
∴△FPB≌△BOC(AAS),
∴FP=BO=3,PB= OC=1,
∴PO=4,
∴F(-3 ,4);
②过点F作FQ⊥BE于点Q,
∵∠CBO+∠BCO=90°,∠PBF=∠BCO,
∴∠CBO+∠PBF=90°,则∠CBF=90°,
由折叠的性质得:∠EBC=∠OBC,EB=BO=3,
∴∠EBC +∠EBF=90°,
∴∠EBF=∠PBF,即FB是∠PBE的角平分线,
又FQ⊥BE,FP⊥轴,
∴FQ= FP=3,
∴△BEF的面积为BEFQ=.
【点睛】
本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.
3、-3
【解析】
【分析】
根据正比例函数定义即可求解.
【详解】
解:∵y=(m-3)x+(m2-9)是正比例函数,
∴m2-9=0且m-3≠0,
∴m=.
【点睛】
本题考查了正比例函数的定义,熟知正比例函数的定义“形如(k为常数,且k≠0)的函数叫正比例函数”是解题关键 .
4、(1)A:,B:;(2)A商场更合算
【解析】
【分析】
(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;
(2)先求A、B两商场花费函数的值,比较大小即可.
【详解】
解:(1)A:,
B:;
(2)当时,A:元,
B:元,
∵,
∴选择在A商场购买比较合算.
【点睛】
本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
5、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
【解析】
【分析】
(1)根据平方的非负性,求得,即可求解;
(2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
(3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
【详解】
解:(1)∵
∴∵,
∴m-6=0,n-2=0
∴m=6,n=2
∴B(-6,0),C(2,0)
(2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
∴∠OAC=∠OBE
∴△OAC≌△OBE(AAS)
∴OC=OE=2
①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
(3)当t=6时,BP=12
∴OB=OP=6
①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
∴∠FME=∠FNP=90°
∵∠MFN=∠EFP=90°
∴∠MFE=∠NFP∵FE=FP
∴
∴ME=NP,FM=FN
∴MO=ON
∴2+EM=6-NP
∴ON=4
∴F(4,4)
②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
∴∠FGE=∠FHP=90°
∵∠GFH=∠EFP=90°
∴∠GFE=∠HFP
∵FE=FP
∴
∴FG=FH, GE=HP
∴HF=OG,FG=OH
∴2+OG=6-OH
∴OG=OH=2
∴F(2,-2)
【点睛】
此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.
北京课改版八年级下册第十四章 一次函数综合与测试一课一练: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共27页。试卷主要包含了点A个单位长度.等内容,欢迎下载使用。
2020-2021学年第十四章 一次函数综合与测试达标测试: 这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。
数学八年级下册第十四章 一次函数综合与测试课后作业题: 这是一份数学八年级下册第十四章 一次函数综合与测试课后作业题,共26页。试卷主要包含了若直线y=kx+b经过第一,若点在第三象限,则点在.,,两地相距80km,甲等内容,欢迎下载使用。