![精品试卷京改版八年级数学下册第十四章一次函数定向测评试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12704676/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷京改版八年级数学下册第十四章一次函数定向测评试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12704676/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷京改版八年级数学下册第十四章一次函数定向测评试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12704676/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版八年级下册第十四章 一次函数综合与测试一课一练
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则18分钟时的温度是( )A.62℃ B.64℃ C.66℃ D.68℃2、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )A.①③ B.①④ C.①②③ D.①③④3、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )A.-1008 B.-1010 C.1012 D.-10124、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元5、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x6、7、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )A. B. C. D.8、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定9、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)10、下列函数中,y随x的增大而减小的函数是( )A. B.y=6﹣2x C. D.y=﹣6+2x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y=,那么自变量x的取值范围是_________.2、已知函数f(x)=+x,则f()=_____.3、已知点在轴上,则________;点的坐标为________.4、某长途汽车客运公司规定旅客可免费携带一定质量的行李.当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:…304050…(元)…468…则旅客最多可免费携带行李的质量是______kg.5、直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是______.三、解答题(5小题,每小题10分,共计50分)1、我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据. x(厘米)1248y(斤)0.751.001.502.5(1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?2、如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,直线与直线相交于点(1)求m,n的值;(2)直线与x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值.3、如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.4、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:A商场:买一盒大气球,送一盒小气球;B商场:一律九折优惠;(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?5、寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.设某学生健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.在平面直角坐标系中的函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求k2的值;(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次? -参考答案-一、单选题1、B【解析】【分析】根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.【详解】解:根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式可得:,解得:,∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,当时,,故选:B.【点睛】题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.2、D【解析】【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可.【详解】①甲的速度为,故正确;②时,已的速度为,后,乙的速度为,故错误;③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;④由①②③得:甲的函数表达式为:,已的函数表达为:时,,时,,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距为,故正确.故选:D.【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.3、C【解析】【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0)…,∵2021÷4=505余1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.4、C【解析】【分析】根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.【详解】设起步价以后函数的解析式为y=kx+b,把(5,15),(7,19)代入解析式,得,解得,∴y=2x+5,当y=10时,x=2.5,当x=10时,y=25,∴C错误,D正确,B正确,A正确,故选C.【点睛】本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.5、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.6、C【解析】【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.7、D【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.故选:D.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、A【解析】【分析】由题意直接根据一次函数的性质进行分析即可得到结论.【详解】解:∵直线y=﹣x+b中,k=﹣<0,∴y将随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点睛】本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.9、C【解析】【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.10、B【解析】【分析】根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.【详解】解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=2>0,∴y随x的增大而增大,故本选项错误.故选:B.【点睛】本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.二、填空题1、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.2、【解析】【分析】根据题意直接把x=代入解析式进行计算即可求得答案.【详解】解:∵函数f(x)=+x,∴f()=+=2,故答案为:2.【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.3、 【解析】【分析】根据轴上的点,纵坐标为0,求出m值即可.【详解】解:∵点在轴上,∴,解得,,则;点的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.4、10【解析】【分析】利用待定系数法求一次函数解析式,令y=0时求出x的值即可.【详解】解:∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:,∴函数表达式为y=0.2x-2,当y=0时,0=0.2x-2,解得x=10,∴旅客最多可免费携带行李的质量是10kg,故答案为:10.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.5、y=-x-2【解析】【分析】根据平移的性质“左加右减,上加下减”,即可求出平移后的直线解析式.【详解】解:直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是y=-x+3-5=y=-x-2.故答案为:y=-x-2.【点睛】本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.三、解答题1、(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13【解析】【分析】(1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;(2)把把x=50代入解析式,求出最大物重即可确定范围.【详解】解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数,设x,y的函数关系式:y=kx+b,∵当x=2时,y=1;x=4时,y=1.5;∴,解得k=,b=,∴x,y的函数关系式:y=x+,把x=16代入:y=x+,得y=4.5,∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)把x=50代入y=x+,得y=13,∴0≤y≤13,∴这杆秤的可称物重范围是0≤y≤13.【点睛】本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键.2、(1),;(2)【解析】【分析】(1)将点代入直线确定m,再将点C代入即可确定n的值;(2)利用函数解析式可得:,,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.【详解】解:(1)∵点在直线上,,,在直线上,,,,;(2)由题意得:,对于直线,令,得,,对于直线,令,得,,,,,,,∴t的值为6.【点睛】题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键.3、(1)C(﹣3,1),y=x+2;(2)见解析;(3)存在,点N(﹣,0)或(,0)【解析】【分析】(1)过点C作CH⊥x轴于点H,根据直线y=2x+2与y轴,x轴分别交于A,B两点,可得点A、B的坐标分别为:(0,2)、(﹣1,0),再证得△CHB≌△BOA,可得BH=OA=2,CH=OB,即可求解;(2)过点C作CH⊥x轴于点H,DF⊥x轴于点F,DG⊥y轴于点G,可先证明△BCH≌△BDF,得到BF=BH,再由B(-1,0),C(﹣3,1),可得到OF=OB=1,从而得到 DG=OB=1,进而证得△BOE≌△DGE,即可求证;(3)先求出直线BC的表达式为,可得k= ,再求出点M(﹣6,0),从而得到S△BMC,S△BPN,即可求解.【详解】解:(1)过点C作CH⊥x轴于点H,令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∵∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(﹣3,1),设直线AC的表达式为y=mx+b ,将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)如图,过点C作CH⊥x轴于点H,DF⊥x轴于点F,DG⊥y轴于点G,∵AC=AD,AB⊥CB,∴BC=BD,∵∠CBH=∠FBD,∴△BCH≌△BDF,∴BF=BH,∵C(﹣3,1),∴OH=3,∵B(-1,0),∴OB=1, BF=BH=2,∴OF=OB=1,∴DG=OB=1, ∵∠OEB=∠DEG,∴△BOE≌△DGE,∴BE=DE;(3)设直线BC的解析式为 ,把点C(﹣3,1),B(﹣1,0),代入,得: ,解得: ,∴直线BC的表达式为:,将点P坐标代入直线BC的表达式得:k= ,∵直线AC的表达式为:y=x+2,∴点M(﹣6,0),∴S△BMC=MB×yC=×5×1=,∴S△BPN=S△BCM==NB×=NB,解得:NB=,故点N(﹣,0)或(,0).【点睛】本题主要考查了求一次函数解析式,等腰三角形的性质,一次函数的性质和图象,熟练掌握利用待定系数法求一次函数解析式,等腰三角形的性质,一次函数的性质和图象是解题的关键.4、(1)A:,B:;(2)A商场更合算【解析】【分析】(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;(2)先求A、B两商场花费函数的值,比较大小即可.【详解】解:(1)A:,B:; (2)当时,A:元,B:元,∵,∴选择在A商场购买比较合算.【点睛】本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.5、(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【解析】【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可; (2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值; (3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.(4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案.【详解】解:(1)∵过点(0,30),(10,180), ∴,解得:, 表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元; (2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k2=25×0.8=20; (3)选择方案一所需费用更少.理由如下: 由题意可知,y1=15x+30,y2=20x. 当健身8次时, 选择方案一所需费用:y1=15×8+30=150(元), 选择方案二所需费用:y2=20×8=160(元), ∵150<160, ∴选择方案一所需费用更少.(4)当时, 解得: 即小琳选择方案一时,可以健身18次,当时,则 解得: 即小琳选择方案二时,可以健身15次, 所以小琳最多健身18次.【点睛】本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共27页。试卷主要包含了如图,一次函数y=kx+b,,两地相距80km,甲等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)