数学北京课改版第十四章 一次函数综合与测试课后复习题
展开
这是一份数学北京课改版第十四章 一次函数综合与测试课后复习题,共29页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )
A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-1
2、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )
A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元
C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元
3、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )
A. B. C. D.
4、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
5、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
6、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
7、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
8、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )
A. B.
C. D.
9、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
10、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )
A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.
2、如图,直线交x轴于点A,交y轴于点B,点A1:坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2;过点A2作x轴的垂线交直线于点B2,以点A为圆心,AB2长为半径画弧交x轴于点A3;……按此做法进行下去,点B2021的坐标为____.
3、直线y=x-2与y轴交点坐标是_____.
4、已知一次函数,且y的值随着x的值增大而减小,则m的取值范围是______.
5、如图所示,公园的位置是_______,车站的位置是_______,学校的位置是_______.
三、解答题(5小题,每小题10分,共计50分)
1、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
2、一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值(在弹性限度内):
x(g)
0
1
2
3
4
5
…
y(cm)
18
20
22
24
26
28
…
(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?
(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?
(3)砝码质量每增加1g,弹簧的长度增加________cm.
3、如图所示,平面直角坐标系中,直线AB交x轴于点B(﹣3,0),交y轴于点A(0,1),直线x=﹣1交AB于点D,P是直线x=﹣1上一动点,且在点D上方,设P(﹣1,n).
(1)求直线AB的解析式;
(2)求△ABP的面积(用含n的代数式表示);
(3)点C是y轴上一点,当S△ABP=2时,△BPC是等腰三角形,
①满足条件的点C的个数是________个(直接写出结果);
②当BP为等腰三角形的底边时,求点C的坐标.
4、在平面直角坐标系xOy中,对于点P给出如下定义:点P到图形上各点的最短距离为,点P到图形上各点的最短距离为,若,就称点P是图形和图形的一个“等距点”.
已知点,.
(1)在点,,中,______是点A和点O的“等距点”;
(2)在点,,中,______是线段OA和OB的“等距点”;
(3)点为x轴上一点,点P既是点A和点C的“等距点”,又是线段OA和OB的“等距点”.
①当时,是否存在满足条件的点P,如果存在请求出满足条件的点P的坐标,如果不存在请说明理由;
②若点P在内,请直接写出满足条件的m的取值范围.
5、寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:
方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;
方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.
设某学生健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.在平面直角坐标系中的函数图象如图所示.
(1)求k1和b的值,并说明它们的实际意义;
(2)求k2的值;
(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.
(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次?
-参考答案-
一、单选题
1、C
【解析】
【分析】
把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.
【详解】
解:由题意得:
解得:
故所求的一次函数关系为
故选:C.
【点睛】
本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.
2、C
【解析】
【分析】
根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.
【详解】
设起步价以后函数的解析式为y=kx+b,
把(5,15),(7,19)代入解析式,得,
解得,
∴y=2x+5,
当y=10时,x=2.5,
当x=10时,y=25,
∴C错误,D正确,B正确,A正确,
故选C.
【点睛】
本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.
3、A
【解析】
【分析】
由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
【详解】
解:过点P作PM⊥OD于点M,
∵长方形的顶点的坐标分别为,点是的中点,
∴点D(5,0)
∵,PM⊥OD,
∴OM=DM
即点M(2.5,0)
∴点P(2.5,4),
故选:A
【点睛】
此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
4、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
5、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
6、A
【解析】
【分析】
先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
【详解】
解:∵一次函数y=mx+n的图象经过第一、二、四象限,
∴m0
∴y随x增大而减小,
∵1
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共23页。试卷主要包含了如图,过点A,点A个单位长度.,已知点P等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共19页。试卷主要包含了下列命题中,真命题是,点P的坐标为,函数y=的自变量x的取值范围是,已知函数和 的图象交于点P等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共22页。试卷主要包含了一次函数y=,一次函数的一般形式是等内容,欢迎下载使用。