![2021-2022学年度京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12704708/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12704708/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12704708/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共30页。试卷主要包含了下列图形中,是中心对称图形的是,下列说法中正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
A. B. C. D.
2、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )
A.22 B.18 C.14 D.10
3、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为( )
A. B. C.4.5 D.4.3
4、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
5、下列图形既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
6、下列图案中,是中心对称图形,但不是轴对称图形的是( )
A. B.
C. D.
7、下列图形中,是中心对称图形的是( )
A. B.
C. D.
8、下列说法中正确的是( )
A.从一个八边形的某个顶点出发共有8条对角线
B.已知C、D为线段AB上两点,若,则
C.“道路尽可能修直一点”,这是因为“两点确定一条直线”
D.用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”
9、一个多边形每个外角都等于36°,则这个多边形是几边形( )
A.7 B.8 C.9 D.10
10、已知中,,,CD是斜边AB上的中线,则的度数是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点.若,.则图中影部分的面积和为 __(结果保留根号和.
2、如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.
3、已知一个多边形内角和1800度,则这个多边形的边数_____.
4、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.
5、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.
2、如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:AE=CF;
(2)若∠ABE=62°,求∠GFC+∠BCF的值.
3、(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ;
(2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB= (用含,的代数式表示);
(3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;
(4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论.
4、如图,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);
(2)求证:四边形CEDF是矩形.
5、△ABC和△GEF都是等边三角形.
问题背景:如图1,点E与点C重合且B、C、G三点共线.此时△BFC可以看作是△AGC经过平移、轴对称或旋转得到.请直接写出得到△BFC的过程.
迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为△ABC中线CD上一点,延长GF交BC于点H,求证:.
联系拓展:如图3,AB=12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列).当最小时,则△MDG的面积为_______.
-参考答案-
一、单选题
1、B
【分析】
根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
【详解】
解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.
∵一个直角三角形的周长为3+,
∴AB+BC=3+-2=1+.
等式两边平方得(AB+BC)2= (1+) 2,
即AB2+BC2+2AB•BC=4+2,
∵AB2+BC2=AC2=4,
∴2AB•BC=2,AB•BC=,
即三角形的面积为×AB•BC=.
故选:B.
【点睛】
本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
2、B
【分析】
首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
【详解】
解:取AC的中点E,连接BE,OE,OB,
∵∠AOC=90°,AC=16,
∴OE=CEAC=8,
∵BC⊥AC,BC=6,
∴BE10,
若点O,E,B不在一条直线上,则OB<OE+BE=18.
若点O,E,B在一条直线上,则OB=OE+BE=18,
∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.
故选:B
【点睛】
此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
3、A
【分析】
根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
【详解】
解:∵四边形ABCD为正方形,
∴∠B=∠DCF=90°,BC=DC,
在△CBE和△DCF中,
,
∴△CBE≌△DCF(SAS),
∴∠BCE=∠CDF,
∵∠BCE+∠DCH=90°,
∴∠CDF+∠DCH=90°,
∴∠DHC=∠DHE=90°,
∵点G为DE的中点,
∴GH=DE,
∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
∴,
∴GH=.
故选A.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
4、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
5、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
6、C
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
C.是中心对称图形,但不是轴对称图形,本选项符合题意;
D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
故选:C.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
7、D
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
【详解】
A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.
8、B
【分析】
根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D.
【详解】
解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;
B、已知C、D为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;
C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;
D、用两个钉子把木条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;
故选B.
【点睛】
本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键.
9、D
【分析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
【详解】
解:∵360°÷36°=10,
∴这个多边形的边数是10.
故选D.
【点睛】
本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.
10、B
【分析】
由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.
【详解】
解:∵∠ACB=90°,∠B=54°,
∴∠A=36°,
∵CD是斜边AB上的中线,
∴CD=AD,
∴∠ACD=∠A=36°.
故选:B.
【点睛】
本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.
二、填空题
1、
【分析】
设的中点为,连接,先求出,,则,,然后求出,最后根据求解即可.
【详解】
解:设的中点为,连接,
,四边形ABCD是矩形,
,∠ABC=90°,
又∵∠CAB=30°,
∴,
∴,
∴,
,
,
,
∴.
故答案为:.
【点睛】
本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到.
2、(8,4)
【分析】
先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.
【详解】
解:∵点A的坐标为(-3,0),
在Rt△ADO中,AD=5, AO=3,,
∴OD==,
∴D(0,4),
∵平行四边形ABCD,
∴AB=CD=8,AB∥CD,
∵AB在x轴上,
∴CD∥x轴,
∴C、D两点的纵坐标相同,
∴C(8,4) .
故答案为(8,4).
【点睛】
本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.
3、12
【分析】
设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.
【详解】
解:设这个多边形的边数是n,
依题意得,
∴,
∴.
故答案为:12.
【点睛】
考查了多边形的内角和定理,关键是根据n边形的内角和为解答.
4、6
【分析】
根据多边形内角和公式及多边形外角和可直接进行求解.
【详解】
解:由题意得:,
解得:,
∴该多边形的边数为6;
故答案为6.
【点睛】
本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.
5、6
【分析】
根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=9,BC=AD
∵•AB•BF=54,
∴BF=12.
在Rt△ABF中,AB=9,BF=12,
由勾股定理得,.
∴BC=AD=AF=15,
∴CF=BC-BF=15-12=3.
设DE=x,则CE=9-x,EF=DE=x.
则x2=(9-x)2+32,
解得,x=5.
∴DE=5.
∴EC=DC-DE=9-5=4.
∴△FCE的面积=×4×3=6.
【点睛】
本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
三、解答题
1、见解析
【分析】
先根据平行线的性质得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分线的定义得到,,则∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,则DE=DF,再由AD=CD,即可证明四边形AECF是平行四边形,再由∠ECF=∠DCE+∠DCF=,即可得证.
【详解】
证明:∵PQ∥BC,
∴∠DEC=∠BCE,∠DFC=∠GCF,
∵CE平分∠BCA,CF平分∠ACG,
∴,,
∴∠DEC=∠DCE,∠DFC=∠DCF,
∴DE=DC,DF=DC,
∴DE=DF,
∵点D是边AC的中点,
∴AD=CD,
∴四边形AECF是平行四边形,
∵∠BCA+∠ACG=180°,
∴∠ECF=∠DCE+∠DCF=,
∴平行四边形AECF是矩形.
【点睛】
本题主要考查了矩形的判定,平行线的性质,角平分线的定义,等腰三角形的性质与判定,等等,熟练掌握矩形的判定条件是解题的关键.
2、(1)证明见解析;(2)73°.
【分析】
(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;
(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴,,
∵,
∴,
∵°,,
∴,
在和中,
,
∴,
∴;
(2)解:∵BE⊥BF,
∴,
又∵,
∴,
∵四边形ABCD是正方形,
∴,
∵,
∴,
∴.
∴的值为.
【点睛】
题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.
3、(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析.
【分析】
(1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解;
(2)同(1),通过计算即可求解;
(3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案;
(4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解.
【详解】
解:(1)∵BF平分∠CBE,AF平分∠DAB,
∴∠FBE=∠CBE,∠FAB=∠DAB.
∵∠D+∠DCB+∠DAB+∠ABC=360°,
∴∠DAB+∠ABC=360°-∠D-∠DCB
=360°-120°-140°=100°.
又∵∠F+∠FAB=∠FBE,
∴∠F=∠FBE-∠FAB=∠CBE−∠DAB
= (∠CBE−∠DAB)
= (180°−∠ABC−∠DAB)
=×(180°−100°)
=40°.
故答案为:40°;
(2)由(1)得:∠AFB= (180°−∠ABC−∠DAB),
∠DAB+∠ABC=360°-∠D-∠DCB.
∴∠AFB= (180°−360°+∠D+∠DCB)
=∠D+∠DCB−90°
=α+β−90°.
故答案为:;
(3)若AG∥BH,则α+β=180°.理由如下:
若AG∥BH,则∠GAB=∠HBE.
∵AG平分∠DAB,BH平分∠CBE,
∴∠DAB=2∠GAB,∠CBE=2∠HBE,
∴∠DAB=∠CBE,
∴AD∥BC,
∴∠DAB+∠DCB=α+β=180°;
(4)如图:
∵AM平分∠DAB,BN平分∠CBE,
∴∠BAM=∠DAB,∠NBE=∠CBE,
∵∠D+∠DAB+∠ABC+∠BCD=360°,
∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,
∴∠DAB+180°-∠CBE=360°-α-β,
∴∠DAB-∠CBE=180°-α-β,
∵∠ABF与∠NBE是对顶角,
∴∠ABF=∠NBE,
又∵∠F+∠ABF=∠MAB,
∴∠F=∠MAB-∠ABF,
∴∠F=∠DAB−∠NBE
=∠DAB−∠CBE
= (∠DAB−∠CBE)
= (180°−α−β)
=90°-α−β.
【点睛】
本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.
4、(1)见解析(2)见解析
【分析】
(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.
(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.
【详解】
(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.
(2)证明:点是AB与其垂直平分线l的交点,
点是AB的中点,
是Rt△ABC上的斜边的中线,
,
DE、DF分别是ADC,∠BDC的角平分线,
,,
,
,
,
,
,
在四边形CEDF中,,
四边形CEDF是矩形.
【点睛】
本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
5、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3).
【分析】
(1)只需要利用SAS证明△BCF≌△ACG即可得到答案;
(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FM⊥BC于M,求出,即可推出,则,即:;
法二:过F作,.先证明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;
(3)如图3-1所示,连接,GM,AG,先证明△ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动.过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQ⊥AB于Q,连接DG,求出DM和QG的长即可求解.
【详解】
(1)∵△ABC和△GEF都是等边三角形,
∴BC=AC,CF=CG,∠ACB=∠FCG=60°,
∴∠ACB+∠ACF=∠FCG+∠ACF,
∴∠FCB=∠GCA,
∴△BCF≌△ACG(SAS),
∴△BFC可以看作是△AGC绕点C逆时针旋转60度所得;
(2)法一:
证明:以为边作,与的延长线交于点K,如图,
∵和均为等边三角形,
∴,∠GFE=60°,
∴,
∴∠EFH+∠ACB=180°,
∴,
∵,
∴.
∵是等边的中线,
∴,
∴,
∴
∴.
在与中,
∴,
∴,
∴,
过点F作FM⊥BC于M,
∴KM=CM,
∵∠K=30°,
∴
∴,
∴,
∴,即:;
法二
证明:过F作,.
∴是等边的中线,
∴,,
∴△FCN≌△FCM(AAS),FC=2FN,
∴CM=CN,,
同法一,.
在与中,
∴
∴,
∴;
(3)如图3-1所示,连接,GM,AG,
∵D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,CD⊥AB,
∴DE∥BC,∠CDA=90°,
∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,
∴△ADE是等边三角形,∠FDE=30°,
∴DE=AE,
∵△GEF是等边三角形,
∴EF=EG,∠GEF=60°,
∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,
∴
∴,即点G在的角平分线所在直线上运动.
过G作,则,
∴最小即是最小,
∴当M、G、P三点共线时,最小
如图3-2所示,过点G作GQ⊥AB于Q,连接DG,
∴QG=PG,
∵∠MAP=60°,∠MPA=90°,
∴∠AMP=30°,
∴AM=2AP,
∵D是AB的中点,AB=12,
∴AD=BD=6,
∵M是BD靠近B点的三等分点,
∴MD=4,
∴AM=10,
∴AP=5,
又∵∠PAG=30°,
∴AG=2GP,
∵,
∴
∴
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解.
相关试卷
这是一份初中数学第十五章 四边形综合与测试精练,共25页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共28页。