开学活动
搜索
    上传资料 赚现金

    2021-2022学年度京改版八年级数学下册第十五章四边形难点解析试卷(含答案详解)

    2021-2022学年度京改版八年级数学下册第十五章四边形难点解析试卷(含答案详解)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形难点解析试卷(含答案详解)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形难点解析试卷(含答案详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十五章 四边形综合与测试测试题

    展开

    这是一份初中第十五章 四边形综合与测试测试题,共25页。试卷主要包含了下列说法中,不正确的是,如图,在六边形中,若,则,下列说法中正确的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,DE分别是ABAC的中点,连接DEBE,点MCB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为(    A.16 B.24 C.32 D.402、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.3、下列四个图形中,为中心对称图形的是(  )A.  B. C.  D.4、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是(    A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<125、下列说法中,不正确的是(    A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形6、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为(  )A.6 B.6.5 C.10 D.137、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为(    A.20º B.25º C.30º D.35º8、如图,在六边形中,若,则    A.180° B.240° C.270° D.360°9、下列说法中正确的是(    A.从一个八边形的某个顶点出发共有8条对角线B.已知CD为线段AB上两点,若,则C.“道路尽可能修直一点”,这是因为“两点确定一条直线”D.用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”10、如图,在正方形有中,EAB上的动点,(不与AB重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点EDEDG的延长线于点H,连接,那么的值为( )A.1 B. C. D.2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点PQ为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CNBA的延长线于点E,则AE的长是 _____.2、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.3、正方形的一条对角线长为4,则这个正方形面积是_________.4、如图,平面直角坐标系中,有三点,以ABO三点为顶点的平行四边形的另一个顶点D的坐标为______.5、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则mn的值是___.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是菱形,DEABDFBC,垂足分别为EF.求证:BEBF2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BMCN相交于点O,若∠BON=60°,则BM=CN②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BMCN相交于点O,若∠BON=90°,则BM=CN然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BMCN相交于点O,若∠BON=108°,则BM=CN任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正nn≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BMCN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BMCN相交于点O∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.3、如图,在▱ABCD中,对角线ACBD交于点OEBD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EADABa,求四边形ABCD的面积.4、如图,已知在RtABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AEDE,过点CCFDE于点F,且DFEF(1)求证:ADCE    (2)若CD=5,AC=6,求△AEB的面积.5、如图,△ABC中,点D是边AC的中点,过D作直线PQBC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形. -参考答案-一、单选题1、C【分析】由中点的定义可得AE=CEAD=BD,根据三角形中位线的性质可得DE//BCDE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AEDE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】DE分别是ABAC的中点,AE=CEAD=BDDE为△ABC的中位线,DE//BCDE=BC∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,∴△MBD≌△EDAMD=AEDE=MBDE//MB∴四边形DMBE是平行四边形,MD=BEAC=18,BC=14,∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.故选:C.【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.2、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.3、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项ACD不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.4、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,中,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.5、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.6、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边=∴此直角三角形斜边上的中线的长==6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.7、C【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】ADBC
    ∴∠AEB=∠DAE=∠B=80°,
    AE=AB=AD
    在三角形AED中,AE=AD,∠DAE=80°,
    ∴∠ADE=50°,
    又∵∠B=80°,
    ∴∠ADC=80°,
    ∴∠CDE=∠ADC-∠ADE=30°.
    故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.8、C【分析】根据多边形外角和求解即可.【详解】解:  故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.9、B【分析】根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D.【详解】解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;B、已知CD为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;D、用两个钉子把木条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;故选B.【点睛】本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键.10、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HNAD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE  AD=ABDM=BE∵点A关于直线DE的对称点为F∴△ADE≌△FDEDA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,RtDFGRtDCG中,RtDFGRtDCGHL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,EHDE∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH∴∠1=∠BEH在△DME和△EBH中,∴△DME≌△EBHSAS),EM=BHRtAEM中,∠A=90°,AM=AE ,即=故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.二、填空题1、1【分析】根据基本作图,得到EC是∠BCD的平分线,由ABCD,得到∠BEC=∠ECD=∠ECB,从而得到BE=BC,利用线段差计算即可.【详解】根据基本作图,得到EC是∠BCD的平分线,∴∠ECD=∠ECB∵四边形ABCD是平行四边形,ABCD∴∠BEC=∠ECD∴∠BEC=∠ECBBE=BC=5,AE= BE-AB=5-4=1,故答案为:1.【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键.2、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:解得:∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.3、8【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.4、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出AD的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点ABO的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBOD的横坐标是3+6=9,纵坐标是4,D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.5、9【分析】根据关于原点对称点的坐标特征求出的值,再代入计算即可.【详解】解:与点关于原点成中心对称,故答案为:9.【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.三、解答题1、见解析【分析】根据菱形的性质,可得ADDCABBC,∠A=∠C.从而得到△AED≌△CFD.从而得到AECF.即可求证.【详解】证明:∵四边形ABCD是菱形, ADDCABBC,∠A=∠CDEABDFBC∴∠AED=∠CFD=90°.∴△AED≌△CFDAAS).AECFABAEBCCF即:BEBF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.2、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.【分析】(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;②连接BDCE,根据全等三角形的判定定理和性质可得:,利用各角之间的关系及等量代换可得:,继续利用全等三角形的判定定理和性质即可得出证明.【详解】解:(1)如选命题①,证明:如图所示:
           中,   如选命题②,证明:如图所示:
         中,  如选命题③,证明:如图所示:
             中,  (2)①根据(1)中规律可得:当时,结论成立;②答:当时,成立.证明:如图所示,连接BDCE
     中,        又∵  中,【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.3、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EOAC,即BDAC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,AOOC∵△ACE是等边三角形,EOAC (三线合一),BDAC∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EOACAOOC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形,∴正方形ABCD的面积=AB2a2【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.4、(1)见解析;(2)39【分析】(1)首先根据CFDEDFEF得出CFDE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.【详解】(1)证明:∵DFEF  ∴点FDE的中点 又∵CFDE  CFDE的中垂线CDCE又∵在RtABC中,∠ACB=90°,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE==5 AB=10  ∴在RtABC中,BC==8EB=EC+BC=13【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.5、见解析【分析】先根据平行线的性质得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分线的定义得到,则∠DEC=∠DCE,∠DFC=∠DCF,推出DEDCDFDC,则DEDF,再由ADCD,即可证明四边形AECF是平行四边形,再由∠ECF=∠DCE+∠DCF,即可得证.【详解】证明:∵PQBC∴∠DEC=∠BCE,∠DFC=∠GCFCE平分∠BCACF平分∠ACG∴∠DEC=∠DCE,∠DFC=∠DCFDEDCDFDCDEDF∵点D是边AC的中点,ADCD∴四边形AECF是平行四边形,∵∠BCA+∠ACG=180°,∴∠ECF=∠DCE+∠DCF∴平行四边形AECF是矩形.【点睛】本题主要考查了矩形的判定,平行线的性质,角平分线的定义,等腰三角形的性质与判定,等等,熟练掌握矩形的判定条件是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步训练题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步训练题,共21页。试卷主要包含了下列图案中,是中心对称图形的是,下列图形中不是中心对称图形的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共24页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试精练:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试精练,共22页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map