年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形专项练习练习题

    2021-2022学年度京改版八年级数学下册第十五章四边形专项练习练习题第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形专项练习练习题第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形专项练习练习题第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试习题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共27页。试卷主要包含了下列图形中,是中心对称图形的是,以下分别是回收,下列命题是真命题的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是(    A. B.C.  D.2、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.3、下列四个图案中,是中心对称图形的是(  )A. B.C. D.4、下列图形中,是中心对称图形的是(   A. B. C. D.5、如图,以O为圆心,长为半径画弧别交AB两点,再分别以AB为圆心,以长为半径画弧,两弧交于点C,分别连接,则四边形一定是(   
    A.梯形 B.菱形 C.矩形 D.正方形6、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.7、下列命题是真命题的是(    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形8、下列图形中,既是中心对称图形也是轴对称图形的是(    A.圆 B.平行四边形 C.直角三角形 D.等边三角形9、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.1010、在平行四边形ABCD中,∠A=30°,那么∠B∠A的度数之比为(     A.4:1 B.5:1 C.6:1 D.7:1第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个多边形内角和1800度,则这个多边形的边数_____.2、如图,MN分别是矩形ABCD的边ADAB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.3、如图,已知ABCD的平分线相交于,求的度数_____.4、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.
     5、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点PBC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
     三、解答题(5小题,每小题10分,共计50分)1、如图,中,对角线ACBD相交于点O,点 EFGH分别是OAOBOCOD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________2、如图,在正方形中,是直线上的一点,连接,过点,交直线于点,连接(1)当点在线段上时,如图①,求证:(2)当点在直线上移动时,位置如图②、图③所示,线段之间又有怎样的数量关系?请直接写出你的猜想,不需证明.3、如图,在△ABC中,,延长CB,并将射线CB绕点C逆时针旋转90°得到射线lD为射线l上一动点,点E在线段CB的延长线上,且,连接DE,过点AM(1)依题意补全图1,并用等式表示线段DMME之间的数量关系,并证明;(2)取BE的中点N,连接AN,添加一个条件:CD的长为_______,使得成立,并证明.4、如图,中,(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,连接,交于点O.求证:四边形是菱形.5、(1)先化简,再求值:(a+b)(ab)﹣aa﹣2b),其中a=1,b=2;(2)如图,菱形ABCD中,ABACEF分别是BCAD的中点,连接AECF.证明:四边形AECF是矩形. -参考答案-一、单选题1、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.4、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】选项均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【分析】根据题意得到,然后根据菱形的判定方法求解即可.【详解】解:由题意可得:∴四边形是菱形.故选:B.【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.6、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.7、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.8、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
    C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
    D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
    故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.10、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,ADBC∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.二、填空题1、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.【详解】解:设这个多边形的边数是n依题意得故答案为:12.【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答.2、10【分析】EEFADF,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.【详解】解:过EEFADF∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,∴△ANM≌△ENMAM=EM∵矩形ABCD∴∠B=∠A=∠D=90°,  FEAD∴∠AFE=∠B=∠A=90°,∴四边形ABEF为矩形,AF=BE=4,FE=AB=8,AM=EM=mFM=m-4RtFEM中,根据勾股定理,即解得m=10,MD=AD-AM=16-10=6,RtMDC中,MC=故答案为10.【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.3、110°度【分析】过点EEHAB,然后由ABCD,可得ABEHCD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.【详解】解:过点EEHAB,如图所示,ABCDABEHCD∴∠ABE=∠BEH,∠CDE=∠DEH∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,∴∠BEH+∠DEH=220°,∴∠ABE+∠CDE=220°,∵∠ABE和∠CDE的平分线相交于F∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,∵∠BFD+∠BED+∠EBF+∠EDF=360°,∴∠BFD=110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点EEHAB,也是解题的关键.4、2.5.【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出ACBC的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,过点BBCADC∴∠BCD =90°,∵四边形ADEF是矩形,∴∠ADE=∠DEF=90°∴四边形BCDE是矩形,答:则壁虎捕捉蚊子的最短路程是2.5m.故答案为:2.5.
    【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.5、【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:的三等分点中有如图:当将纸片沿横向对折根据题意得:中有的三等分点故答案为:【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.三、解答题1、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OCOB=OD,从而得到OE=OGOF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,OA=OCOB=OD∵点 EFGH分别是OAOBOCOD的中点,OE=OGOF=OH∴四边形EFGH是平行四边形;(2)∵点 EFGH分别是OAOBOCOD的中点,的周长为2(AB+BC)=32,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.2、(1)见解析;(2)图②中,图③中【分析】(1)在上截取,连接,可先证得,则,进而可证得△AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的之间的数量关系.【详解】解:(1)证明:如图,在上截取,连接∵四边形是正方形,∴△ECF是等腰直角三角形,中,
     (2)图②:,理由如下:如下图,在延长线上截取,连接
     ∵四边形是正方形,  ∴△ECF是等腰直角三角形,  中,图③:如图,在DE上截取DF=BE,连接
     ∵四边形是正方形,∴△ECF是等腰直角三角形,中,  【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.3、(1)DM=ME,见解析;(2),见解析【分析】(1)补全图形,连接AE、AD,通过∠ABE=∠ACDAB=ACBE=CD,证明 △ABE ≌ △ACD,得AE=AD,再利用AMDEM,即可得到DM=EM(2)连接ADAEBM ,可求出,当时,可得,由(1)得DM=EM,可知BM是△CDE的中位线从而得到BMCD,得到∠ABM=135°=∠ABE.因为NBE中点,可知从而证明△ABN ≌ △ABM得到AN=AM,由(1),△ABE ≌ △ACD,可证明∠EAB=∠DACAD=AE进而得到∠EAD=90°,又因为DM=EM,即可得到【详解】(1)补全图形如下图,DMME之间的数量关系为DM=ME           证明:连接AEAD∵ ∠BAC=90°,AB=AC∴ ∠ABC=∠ACB=45°.∴ ∠ABE=180°-∠ABC=135°.∵ 由旋转,∠BCD=90°,∴ ∠ACD=∠ACB+∠BCD=135°.∴ ∠ABE=∠ACDAB=ACBE=CD∴ △ABE ≌ △ACD        AE=ADAMDEMDM=EM                               (2)                                    证明:连接ADAEBMAB=AC=1,∠BAC=90°,∵ 由(1)得DM=EMBM是△CDE的中位线.  BMCD∴ ∠EBM=∠ECD=90°.∵ ∠ABE=135°,∴ ∠ABM=135°=∠ABENBE中点,BM=BN  AB=AB∴ △ABN ≌ △ABMAN=AM∵ 由(1),△ABE ≌ △ACD∴ ∠EAB=∠DACAD=AE∵ ∠BAC=∠DAC+∠DAB=90°,∴ ∠EAD=90°.DM=EM                             【点睛】本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键.4、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.(2)证明:如图所示:中,又∵∴四边形是菱形.【点睛】本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.5、(1),0;(2)证明见解析.【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到,然后根据EF分别是BCAD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形.【详解】(1)(a+b)(ab)﹣aa﹣2ba=1,b=2代入得:原式=(2)如图所示,∵四边形ABCD是菱形,,且又∵EF分别是BCAD的中点,∴四边形AECF是平行四边形,ABACEBC的中点,,即∴平行四边形AECF是矩形.【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理. 

    相关试卷

    2021学年第十五章 四边形综合与测试课后测评:

    这是一份2021学年第十五章 四边形综合与测试课后测评,共23页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共23页。试卷主要包含了以下分别是回收,如图,M,下列命题是真命题的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共23页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map