搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(含答案详解)

    2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(含答案详解)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(含答案详解)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形章节测评试卷(含答案详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共24页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是(    A. B. C. D.2、在锐角△ABC中,∠BAC=60°,BNCM为高,PBC的中点,连接MNMPNP,则结论:①NPMP;②ANABAMAC;③BN=2AN;④当∠ABC=60°时,MNBC,一定正确的有(    A.①②③ B.②③④ C.①②④ D.①④3、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为(    A.14或15或16 B.15或16或17 C.15或16 D.16或174、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是(    ).A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,65、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.6、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B. C. D.7、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是(  )A.菱形 B.矩形 C.正方形 D.三角形8、下列图形中不是中心对称图形的是(    A. B. C. D.9、下列图形中,既是中心对称图形也是轴对称图形的是(    A.圆 B.平行四边形 C.直角三角形 D.等边三角形10、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式(       A.1种 B.2种 C.3种 D.4种第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点PQ为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CNBA的延长线于点E,则AE的长是 _____.2、如图,点P是矩形ABCD的对角线AC上一点,过点PEFBC,分别交ABCD于点EF,连接PBPD,若AE=2,PF=9,则图中阴影面积为______;3、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.4、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.5、如图,矩形的对角线相交于点,分别以点为圆心,长为半径画弧,分别交于点.若,则图中阴影部分的面积为_______.(结果保留三、解答题(5小题,每小题10分,共计50分)1、如图,的对角线相交于点O,过点BBPAC,过点CCPBD相交于点P(1)试判断四边形的形状,并说明理由;(2)若将改为矩形,且,其他条件不变,求四边形的面积;(3)要得到矩形应满足的条件是_________(填上一个即可).2、“三等分一个任意角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的.有人曾利用如图所示的图形进行探索,其中ABCD是长方形,FDA延长线上一点,GCF上一点,且∠ACG=∠AGC,∠GAF=∠F.请写出∠ECB和∠ACB的数量关系,并说明理由.3、如图,△AOB是等腰直角三角形.(1)若A(﹣4,1),求点B的坐标;(2)ANy轴,垂足为NBMy轴,垂足为点M,点PAB的中点,连PM,求∠PMO度数;(3)在(2)的条件下,点QON的中点,连PQ,求证:PQAM4、如图,在平行四边形ABCD中,,点EF分别是BCAD的中点.(1)求证:(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角.5、如图,中,对角线ACBD相交于点O,点 EFGH分别是OAOBOCOD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________ -参考答案-一、单选题1、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.2、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】CMBN分别是高∴△CMB、△BNC均是直角三角形∵点PBC的中点PMPN分别是两个直角三角形斜边BC上的中线故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜AB=2ANAC=2AMANAB=AMAC=1:2即②正确RtABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形CMABBNACMN分别是ABAC的中点MN是△ABC的中位线MNBC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.3、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.【详解】解:设新多边形的边数为n
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.4、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.5、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵分别是的中点,∴四边形是平行四边形,∴平行四边形是矩形,不一定相等,不一定相等,矩形不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.8、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.9、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
    C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
    D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
    故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.故只购买一种瓷砖进行平铺,有3种方式.故选:C.【点睛】本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.二、填空题1、1【分析】根据基本作图,得到EC是∠BCD的平分线,由ABCD,得到∠BEC=∠ECD=∠ECB,从而得到BE=BC,利用线段差计算即可.【详解】根据基本作图,得到EC是∠BCD的平分线,∴∠ECD=∠ECB∵四边形ABCD是平行四边形,ABCD∴∠BEC=∠ECD∴∠BEC=∠ECBBE=BC=5,AE= BE-AB=5-4=1,故答案为:1.【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键.2、【分析】PMADM,交BCN,根据矩形的性质可得SPEB=SPFD即可求解.【详解】解:作PMADM,交BCN

    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,,S=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明3、720°720度【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.4、12【分析】DEF分别是ABACBC的中点,可以判断DFFEDE为三角形中位线,利用中位线定理求出DFFEDEABBCCA的长度关系即可解答.【详解】解:∵如图所示,DEF分别是ABBCAC的中点,EDFEDF为△ABC中位线,DFBCFEABDEAC∴△DEF的周长=DF+FE+DEBCABACAB+BC+CA24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.5、##【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和.【详解】解:∵四边形是矩形,∴图中阴影部分的面积为:故答案为:【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题1、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BCACBD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.(3)添加的条件只要可以证明即可得到矩形【详解】解:(1)四边形BPCO是平行四边形,
     BPACCPBD∴四边形BPCO是平行四边形. (2)连接OP           ∵四边形ABCD是矩形,OB=BDOC=ACAC=BD,∠ABC=90°,OB=OC    又四边形BPCO是平行四边形,□BPCO是菱形.
     OPBC.又∵ABBCOPAB.又∵ACBP四边形是平行四边形,OP=AB=6.     S菱形BPCO=      (3)AB=BCACBD等(答案不唯一).AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形ACBD时,利用含有的平行四边形为矩形,即可得到矩形【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.2、∠ACB=3∠ECB,见解析.【分析】由矩形的对边平行可得∠F=∠ECB,由外角等于和它不相邻的两个内角的和可得∠AGC=2∠F,那么∠ECB=∠F,所以∠ACB=3∠ECB【详解】解:∠ACB=3∠ECB理由如下:在△AGF中,∠AGC=∠F+∠GAF=2∠F∵∠ACG=∠AGC∴∠ACG=2∠FAD//BC∴∠ECB=∠F∴∠ACB=∠ACG+∠BCE=3∠F故∠ACB=3∠ECB【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.3、(1)(1,4);(2)45°;(3)见解析
     【分析】(1)过点AAEx轴于E,过点BBFx轴于F,证明△OAE≌△BOF得到OF=AEBF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MPAN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)连接OPAM,取BM中点G,连接GP,则GP是△ABM的中位线,AMGP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQPG,即PGAM【详解】解:(1)如图所示,过点AAEx轴于E,过点BBFx轴于F∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOFAO=OB∴△OAE≌△BOFAAS),OF=AEBF=OE∵点A的坐标为(-4,1),OF=AE=1,BF=OE=4,∴点B的坐标为(1,4);(2)如图所示,延长MPAN交于HAHy轴,BMy轴,BM∥AN∴∠MBP=∠HAP,∠AHP=∠BMP∵点PAB的中点,AP=BP∴△APH≌△BPMAAS),AH=BMA点坐标为(-4,1),B点坐标为(1,4),AN=4,OM=4,BM=1,ON=1,HN=AN-AH=AN-BM=3,MN=OM-ON=3,HN=MN∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如图所示,连接OPAM,取BM中点G,连接GPGP是△ABM的中位线,AM∥GPQON的中点,GBM的中点,ON=BM=1,PAB中点,△AOB是等腰直角三角形,∠AOB=90°,,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ由(2)得∠GBP=∠BAN∴∠GBP=∠QOP∴△PQO≌△PGBSAS),∴∠OPQ=∠BPG∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,PQPGPGAM【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4、(1)证明见解析;(2)【分析】(1)先证明再证明从而可得结论;(2)证明是等边三角形,再分别求解 从而可得答案.【详解】证明(1) 平行四边形ABCD中,, EF分别是BCAD的中点, (2) 是等边三角形, 四边形是平行四边形, 所以等于的2倍的角有:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.5、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OCOB=OD,从而得到OE=OGOF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,OA=OCOB=OD∵点 EFGH分别是OAOBOCOD的中点,OE=OGOF=OH∴四边形EFGH是平行四边形;(2)∵点 EFGH分别是OAOBOCOD的中点,的周长为2(AB+BC)=32,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键. 

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试课时训练:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共29页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共21页。试卷主要包含了下列∠A,以下分别是回收等内容,欢迎下载使用。

    初中数学第十五章 四边形综合与测试随堂练习题:

    这是一份初中数学第十五章 四边形综合与测试随堂练习题,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map