初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共22页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )A.①②③ B.②③④ C.①②④ D.①④2、一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.103、下列说法中正确的是( )A.从一个八边形的某个顶点出发共有8条对角线B.已知C、D为线段AB上两点,若,则C.“道路尽可能修直一点”,这是因为“两点确定一条直线”D.用两个钉子把木条固定在墙上,用数学的知识解释是“两点之间线段最短”4、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A.三角形 B.四边形 C.五边形 D.六边形5、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7 B.6 C.4 D.86、下列图标中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.7、下列图形中不是中心对称图形的是( )A. B. C. D.8、在平面直角坐标系中,点关于原点对称的点的坐标是( )A. B. C. D.9、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )A.20º B.25º C.30º D.35º10、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )A.16 B.12 C.8 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、过多边形的一个顶点作对角线,可将多边形分成5个三角形,则多边形的边数是______.2、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则______.3、已知一个多边形内角和1800度,则这个多边形的边数_____.4、已知正方形ABCD的一条对角线长为2,则它的面积是______.5、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______. 三、解答题(5小题,每小题10分,共计50分)1、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________2、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.3、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE;(2)BE⊥AF.4、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.5、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE -参考答案-一、单选题1、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.2、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.3、B【分析】根据n边形的某个顶点出发共有(n-3)条对角线即可判断A;根据线段的和差即可判断B;根据两点之间,线段最短即可判断C;根据两点确定一条直线即可判断D.【详解】解:A、从一个八边形的某个顶点出发共有5条对角线,说法错误,不符合题意;B、已知C、D为线段AB上两点,若AC=BD,则AD=BC,说法正确,符合题意;C、“道路尽可能修直一点”,这是因为“两点之间,线段最短”,说法错误,不符合题意;D、用两个钉子把木条固定在墙上,用数学的知识解释是“两点确定一条直线”,说法错误,不符合题意;故选B.【点睛】本题主要考查了多边形对角线问题,线段的和差,两点之间,线段最短,两点确定一条直线等等,熟知相关知识是解题的关键.4、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.5、A【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接AC,OB交于点D,∵C是直线与y轴的交点,∴点C的坐标为(0,2),∵OA=4,∴A点坐标为(4,0),∵四边形OABC是矩形,∴D是AC的中点,∴D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,∴,∴,故选A.
【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.6、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.7、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.8、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.9、C【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.10、C【分析】由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=BO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.二、填空题1、7【分析】根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成(n﹣2)个三角形,依此可得n的值.【详解】解:设多边形的边数为n,由题意得,n﹣2=5,解得:n=7,即这个多边形是七边形.故答案为:7.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.2、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 .【详解】解:<20,∴,∵能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6.【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键.3、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.【详解】解:设这个多边形的边数是n,依题意得,∴,∴.故答案为:12.【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答.4、6【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长为2, 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.5、8【分析】证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.【详解】解:∵四边形ABCD是平行四边形,∴,AB=CD, ∵,∴四边形ABDE是平行四边形,∴DE=CD=,, 过点E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,, ∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案为:8.【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.三、解答题1、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,∴,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形;(2)∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,∴,∴ ,∵的周长为2(AB+BC)=32,∴ ,∴ ,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为 .【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.2、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如图, ,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,.【详解】解:(1)如图所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;
(2)如图所示, ,∴,∴△ABC是直角三角形;
(3)如图所示,, ,∴,∴∠ABC=90°,∴四边形ABCD是正方形,∴.
【点睛】本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.3、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠D=∠ECF,则可证明△ADE≌△FCE(ASA);(2)由平行四边形的性质证出AB=BF,由全等三角形的性质得出AE=FE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,∴∠D=∠ECF,∵E为CD的中点,∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.4、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,,,,在中, ,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.5、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明.【详解】解:四边形ABCD是矩形,,,,,,在和中, .【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步训练题,共23页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共28页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。