开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试卷(含答案解析)

    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试卷(含答案解析)第1页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试卷(含答案解析)第2页
    2021-2022学年度强化训练京改版八年级数学下册第十五章四边形达标测试试卷(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中北京课改版第十五章 四边形综合与测试精练

    展开

    这是一份初中北京课改版第十五章 四边形综合与测试精练,共25页。
    京改版八年级数学下册第十五章四边形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是中心对称图形又是轴对称图形的有几个(  )A.1个 B.2个 C.3个 D.4个2、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是(    A.180° B.220° C.240° D.260°3、已知中,CD是斜边AB上的中线,则的度数是(    A. B. C. D.4、在RtABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为(    A.5 B.4 C.3 D.25、如图,在矩形ABCD中,点EBC的中点,连接AE,点FAE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )A. B. C. D.546、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.7、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是(  )A.菱形 B.矩形 C.正方形 D.三角形8、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B.C. D.9、下图是文易同学答的试卷,文易同学应得(    A.40分 B.60分 C.80分 D.100分10、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点PQ为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CNBA的延长线于点E,则AE的长是 _____.2、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).3、若正边形的每个内角都等于120°,则这个正边形的边数为________.4、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于AB两点,则线段AB长度的最小值为_________.5、在矩形ABCD中,点EAD边上,△BCE是以BE为一腰的等腰三角形,若AB=4,BC=5,则线段DE的长为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD的对角线ACBD相交于点OBD12cm ,AC6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O 以2cm /s 的速度向点D运动. (1)若点EF同时运动,设运动时间为t秒,当t 为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积.2、如图,在RtABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交ACBC于点EF(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、如图,在中,对角线ACBD交于点OAB=10,AD=8,ACBC,求(1)的面积;(2)△AOD的周长.
     4、综合与实践(1)如图1,在正方形ABCD中,点MN分别在ADCD上,若∠MBN=45°,则MNAMCN的数量关系为      (2)如图2,在四边形ABCD中,BCADABBC,∠A+∠C=180°,点MN分别在ADCD上,若MBNABC,试探索线段MNAMCN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,ABBC,∠ABC+∠ADC=180°,点MN分别在DACD的延长线上,若∠MBNABC,试探究线段MNAMCN的数量关系为      5、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,MAD上不同于AD两点的一动点,NCD上一动点,且AM+CN=1.(1)证明:无论MN怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值. -参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,故选C.【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.3、B【分析】由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.【详解】解:∵∠ACB=90°,∠B=54°,
    ∴∠A=36°,
    CD是斜边AB上的中线,
    CD=AD
    ∴∠ACD=∠A=36°.
    故选:B.【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.4、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,
    CD=AB
    AB的长为10,
    DC=5,
    故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.5、C【分析】过点F分别交于MN,由FAE中点得,根据,计算即可得出答案.【详解】如图,过点F分别交于MN∵四边形ABCD是矩形,∵点EBC的中点,FAE中点,故选:C.【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.6、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵分别是的中点,∴四边形是平行四边形,∴平行四边形是矩形,不一定相等,不一定相等,矩形不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.8、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.9、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键10、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.二、填空题1、1【分析】根据基本作图,得到EC是∠BCD的平分线,由ABCD,得到∠BEC=∠ECD=∠ECB,从而得到BE=BC,利用线段差计算即可.【详解】根据基本作图,得到EC是∠BCD的平分线,∴∠ECD=∠ECB∵四边形ABCD是平行四边形,ABCD∴∠BEC=∠ECD∴∠BEC=∠ECBBE=BC=5,AE= BE-AB=5-4=1,故答案为:1.【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键.2、AC=BDACBD(答案不唯一)【分析】根据正方形的判定定理,即可求解.【详解】解:当AC=BD时,平行四边形ABCD为菱形,又由ACBD,可得菱形ABCD为正方形,所以当AC=BDACBD时,平行四边形ABCD为正方形.故答案为:AC=BDACBD(答案不唯一)【点睛】本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.3、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.【详解】解:设所求正边形边数为解得故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.4、【分析】根据正方形的对角线平分一组对角线可得∠OCD=∠ODB=45°,正方形的对角线互相垂直平分且相等可得∠COD=90°,OC=OD,然后根据同角的余角相等求出∠COA=∠DOB,再利用“ASA”证明△COA和△DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到△AOB是等腰直角三角形,再根据垂线段最短可得OACD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答.【详解】解:如图,∵四边形CDEF是正方形,中,OA=OB
    ∵∠AOB=90°,
    ∴△AOB是等腰直角三角形,
    由勾股定理得: ,要使AB最小,只要OA取最小值即可,
    根据垂线段最短,OACD时,OA最小,
    ∵正方形CDEF
    FCCDOD=OF
    CA=DA
    OA=,AB=【点睛】本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB是等腰直角三角形是解题的关键.5、2.5或2.【分析】需要分类讨论:①BE1E1C,此时点E1BC的中垂线与AD的交点;②BEBC,在直角△ABE中,利用勾股定理求得AE的长度,然后求得DE的长度即可.【详解】解:①当BE1E1C时,点E1BC的中垂线与AD的交点,②当BCBE=5时,在直角△ABE中,AB=4,则综上所述,线段DE的长为2.5或2.故答案是:2.5或2.【点睛】本题考查矩形的性质和等腰三角形的性质,勾股定理,在此题中,没有确定等腰三角形的底边,所以需要分类讨论,以防漏解.三、解答题1、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;
    (2)若是菱形,则AC垂直于BD,即有,故AB可求;
    (3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,AOOCEOOFBOOD=6cm∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则∴当AB时,平行四边形是菱形;(3)由(1)(2)可知当t=2sAB=时,四边形AECF是菱形,EO=6−t=4,EF=8,∴菱形AECF的面积=【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明都是,最后加上,即可证明结论.【详解】(1)答案如下图所示:
     分别以AB两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点MN为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点TN为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,RtABC上的斜边的中线,DEDF分别是ADC,∠BDC的角平分线,在四边形CEDF中,四边形CEDF是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
     BC=AD=8ACBC∴∠ACB=90°RtABC中,由勾股定理得AC2=AB2-BC2(2)∵四边形ABCD是平行四边形,且AC=6∵∠ACB=90°,BC=8【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.4、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM'BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'CN三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM'BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'CN三点共线,再由∠MBNABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由ABBC,可证得△ABM≌△CB M',从而得到AM=C M'BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBNABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM'BM=BM',∠A=∠BCM',∠ABM=∠M'BC在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC    ∴∠BCM'+∠BCD=180°,∴点M'CN三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBNBN=BN∴△NBM≌△NBM'MN= M'NM'N= M'C+CNMN= M'C+CN=AM+CN(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM'BM=BM',∠A=∠BCM',∠ABM=∠M'BC∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'CN三点共线,∵∠MBNABC∴∠ABM+∠CBN=ABC=∠MBN∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBNBN=BN∴△NBM≌△NBM'MN= M'NM'N= M'C+CNMN= M'C+CN=AM+CN(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M'∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠CABBC∴△ABM≌△CB M'AM=C M'BM=B M',∠ABM=∠CB M'∴∠MA M'=∠ABC∵∠MBNABC∴∠MBNMA M'=∠M'BNBN=BN∴△NBM≌△NBM'MN= M'NM'N=CN-C M'  MN=CN-AM故答案是:MN=CN-AM【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.5、(1)见解析;(2)△BMN面积的最小值为【分析】(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;(2)过点BBEMN于点E【详解】(1)证明:如图所示,连接BD在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,ABBDAM+CN=1,DN+CN=1,AMDN在△AMB和△DNB中,∴△AMB≌△DNBSAS),BMBN,∠MBA=∠NBD又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)过点BBEMN于点EBMBNMNx∴当BMAD时,x最小,此时,∴△BMN面积的最小值为【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业,共28页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版第十五章 四边形综合与测试课后练习题:

    这是一份北京课改版第十五章 四边形综合与测试课后练习题,共30页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map