搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练练习题(无超纲)

    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练练习题(无超纲)第1页
    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练练习题(无超纲)第2页
    2021-2022学年最新京改版八年级数学下册第十五章四边形同步训练练习题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试当堂检测题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂检测题,共30页。试卷主要包含了以下分别是回收,如图,在六边形中,若,则等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形既是中心对称图形,又是轴对称图形的是( )
    A. B.
    C. D.
    2、一个多边形每个外角都等于36°,则这个多边形是几边形( )
    A.7 B.8 C.9 D.10
    3、下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    4、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
    A.14或15或16 B.15或16或17 C.15或16 D.16或17
    5、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
    A. B. C. D.
    6、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )

    A. B. C. D.
    7、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有( )

    A.1个 B.2个 C.3个 D.4个
    8、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )
    A. B.
    C. D.
    9、如图,在六边形中,若,则( )

    A.180° B.240° C.270° D.360°
    10、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.

    2、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_____度.
    3、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则______.
    4、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.
    5、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.


    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.


    2、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)

    3、如图,四边形ABCD是平行四边形,∠BAC=90°.
    (1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)
    (2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.

    4、在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段.点A固定在格点上.

    (1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a=   ,b=   ,=   ;
    (2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为    ,   .
    5、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PC=m.

    (1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为   ,此时若△APD是等腰直角三角形,求点D的坐标;
    (2)直线y=2x+b过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、D
    【分析】
    一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
    【详解】
    A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
    B、是轴对称图形,但不是中心对称图形,故不符合题意;
    C、是中心对称图形,但不是轴对称图形,故不符合题意;
    D、既是中心对称图形,也是轴对称图形,故符合题意.
    【点睛】
    本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
    2、D
    【分析】
    根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
    【详解】
    解:∵360°÷36°=10,
    ∴这个多边形的边数是10.
    故选D.
    【点睛】
    本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.
    3、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不合题意;
    C.是轴对称图形,不是中心对称图形,故此选项符合题意;
    D.是轴对称图形,也是中心对称图形,故此选项不合题意.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    4、A
    【分析】
    由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
    【详解】
    解:设新多边形的边数为n,
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.
    【点睛】
    本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
    5、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
    【详解】
    解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.
    【点睛】
    此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
    6、B
    【分析】
    根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.
    【详解】
    解:∵∠ACB=90°,∠B=30°,
    ∴∠BAC=90°-30°=60°,
    ∵AD平分∠BAC,
    ∴∠DAB=∠BAC=30°,
    ∴∠DAB=∠B,
    ∴AD=BD=a,
    在Rt△ACB中,E是AD中点,
    ∴CE=AD=,
    故选: B.
    【点睛】
    本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.
    7、C
    【分析】
    根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.
    【详解】
    解:①∵四边形ACHI和四边形ABED都是正方形,
    ∴AI=AC,AB=AD,∠IAC=∠BAD=90°,
    ∴∠IAC+∠CAB=∠BAD+∠CAB,
    即∠IAB=∠CAD,
    在△ABI和△ADC中,

    ∴△ABI≌△ADC(SAS),
    ∴BI=CD,
    故①正确;
    ②过点B作BM⊥IA,交IA的延长线于点M,

    ∴∠BMA=90°,
    ∵四边形ACHI是正方形,
    ∴AI=AC,∠IAC=90°,S1=AC2,
    ∴∠CAM=90°,
    又∵∠ACB=90°,
    ∴∠ACB=∠CAM=∠BMA=90°,
    ∴四边形AMBC是矩形,
    ∴BM=AC,
    ∵S△ABI=AI•BM=AI•AC=AC2=S1,
    由①知△ABI≌△ADC,
    ∴S△ACD=S△ABI=S1,
    即2S△ACD=S1,
    故②正确;
    ③过点C作CN⊥DA交DA的延长线于点N,

    ∴∠CNA=90°,
    ∵四边形AKJD是矩形,
    ∴∠KAD=∠AKJ=90°,S3=AD•AK,
    ∴∠NAK=∠AKC=90°,
    ∴∠CNA=∠NAK=∠AKC=90°,
    ∴四边形AKCN是矩形,
    ∴CN=AK,
    ∴S△ACD=AD•CN=AD•AK=S3,
    即2S△ACD=S3,
    由②知2S△ACD=S1,
    ∴S1=S3,
    在Rt△ACB中,AB2=BC2+AC2,
    ∴S3+S4=S1+S2,
    又∵S1=S3,
    ∴S1+S4=S2+S3,
    即③正确;
    ④在Rt△ACB中,BC2+AC2=AB2,
    ∴S3+S4=S1+S2,
    ∴,
    故④错误;
    综上,共有3个正确的结论,
    故选:C.
    【点睛】
    本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.
    8、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    9、C
    【分析】
    根据多边形外角和求解即可.
    【详解】
    解: ,

    故选:C
    【点睛】
    本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.
    10、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,不符合题意;
    B、是轴对称图形,不是中心对称图形,不符合题意;
    C、既是轴对称图形,又是中心对称图形,符合题意;
    D、是轴对称图形,不是中心对称图形,不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、4
    【分析】
    过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.
    【详解】
    如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,
    ∵四边形ABCD的对角线交点为O,
    ∴OA=OC,∠ABC=90°,AB=BC,
    ∴OG∥BC,OH∥AB,


    ∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,
    ∴=4,
    ∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,
    ∴∠FOH=∠EOG,
    ∵∠OGE=∠OHF=90°,OG=OH,
    ∴△OGE≌△OHF,
    ∴,
    ∴,
    ∴=4,
    故答案为:4.
    【点睛】
    本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.
    2、720
    【分析】
    根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案.
    【详解】
    解:由题意,得
    两个四边形有一条公共边,得
    多边形是,
    由多边形内角和定理,得

    故答案为:720.
    【点睛】
    本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边.
    3、5或6
    【分析】
    先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 .
    【详解】
    解:<20,
    ∴,
    ∵能被5整除,
    当n=5,能被5整除,
    当n-1=5,n=6,能被5整除,
    故答案为5或6.
    【点睛】
    本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键.
    4、144°度

    【分析】
    先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.
    【详解】
    解:∵四边形的四个外角的度数之比为1:2:3:4,
    ∴四个外角的度数分别为:360°×;
    360°×;
    360°×;
    360°×;
    ∴它最大的内角度数为:.
    故答案为:144°.
    【点睛】
    本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.
    5、
    【分析】
    利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.
    【详解】
    解:∵A,B,C,D是正方形各边的中点
    ∴,
    ∵正方形ABCD的边长为,即AB=,
    ∴,解得:,
    ∴==2,
    同理==2,
    ==4 …,
    ∴,
    ∴=,
    ∴的边长为
    故答案为:.
    【点睛】
    本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.
    三、解答题
    1、见解析
    【分析】
    根据菱形的性质可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS证明△ADE≌△CDF得到DE=DF,则∠DEF=∠DFE.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,∠A=∠C,
    ∵BE=BF,
    ∴AB-BE=BC-BF,即AE=CF,
    ∴△ADE≌△CDF(SAS),
    ∴DE=DF,
    ∴∠DEF=∠DFE.

    【点睛】
    本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.
    2、2598元
    【分析】
    根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.
    【详解】
    连接BD,AD相交于点O,如图:

    ∵四边形ABCD是一个菱形,
    ∴AC⊥BD,
    ∵∠ABC=120°,
    ∴∠A=60°,
    ∴△ABD为等边三角形,
    ∵菱形的周长为40m,
    ∴菱形的边长为10m,
    ∴BD=10m,BO=5m,
    ∴在Rt△AOB中,m,
    ∴AC=2OA=m,
    ∵E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴EH=BD =5m,EF=AC=5m,
    ∴S矩形=5×5=50m2,
    则需投资资金50×30=1500×1.732≈2598元
    【点睛】
    本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.
    3、(1)图形见解析;(2),证明见解析
    【分析】
    (1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;
    (2)证明DF平分,再利用角平分线的性质判定即可.
    【详解】
    (1)图形如下:

    (2),证明如下:
    由(1)可得:,CE=CD

    ∵四边形ABCD是平行四边形
    ∴AD∥BC,AB∥CD
    ∴,

    即DF平分
    ∵∠BAC=90°


    【点睛】
    本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.
    4、(1),2,;(2)4或5.
    【分析】
    (1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;
    (2)根据要求周长边长为的菱形即可.
    【详解】
    解:(1)由题意得:a=,b=2,
    ∴;
    故答案为:,2,;
    (2)如图1,2中,菱形ABCD即为所求.
    菱形ABCD的面积为=×4×2=4或菱形ABCD的面积=×=5,
    故答案为:4或5.

    【点睛】
    本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题.
    5、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
    【分析】
    (1)过点D作DE⊥y轴于E,PF⊥y轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点D(n,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y=2x+6上,求出n=4即可;
    (2)直线y=2x+b过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可
    【详解】
    解:(1)过点D作DE⊥y轴于E,PF⊥y轴于F,
    设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,
    ∴x=n,y=2n+6,
    ∴点D(n,2n+6),
    ∵△APD是等腰直角三角形,
    ∴DA=AP,∠DAP=90°,
    ∴∠DAE+∠FAP=180°-∠DAP=90°,
    ∵DE⊥y轴,PF⊥y轴,
    ∴∠DEA=∠AFP=90°,
    ∴∠EDA+∠DAE=90°,
    ∴∠EDA=∠FAP,
    在△EDA和△FAP中,

    ∴△EDA≌△FAP(AAS),
    ∴AE=PF,ED=FA,
    ∵四边形OABC为矩形,B的坐标为(8,6),
    ∴AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,
    ∵∠AFP=90°,
    ∴四边形AFPB为矩形,
    ∴PF=AB=8,
    ∴EA=FP=8,
    ∴OE=OA+AE=6+8=14,
    ∴点D(n,14),
    ∵点D在直线y=2x+6上,
    ∴14=2n+6,,
    ∴n=4,
    ∴点D(4,14);


    (2)直线y=2x+b过点(3,0),
    ∴0=6+b,
    ∴b =-6,
    ∴直线y=2x-6,
    设点D(x, 2x-6),
    过点D作EF⊥y轴,交y轴于E,交CB延长线于F,
    要使△ADP为等腰直角三角形,
    当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,
    ∴∠ADE+∠FDP=180°-∠ADP=90°,
    ∵DE⊥y轴,PF⊥y轴,
    ∴∠DEA=∠AFP=90°,
    ∴∠EDA+∠DAE=90°,
    ∴∠EAD=∠FDP,
    在△EDA和△FPD中,

    ∴△EDA≌△FPD(AAS),
    ∴AE=DF=2x-6-8=2x-14,ED=FP=x,
    ∵四边形OABC为矩形,AB=OC=8,OA=BC=6,
    ∴∠OCF=90°,
    ∴四边形OCFE为矩形,EF=OC=8,
    ∴DE+DF=x+2x-14=8,
    解得x=,
    ∴,
    ∴点D;


    当∠APD=90°,AP=DP,△ADP为等腰直角三角形,
    ∴∠APB+∠DPF=90°,
    过D作DF⊥射线CB于F,
    ∴∠DFP=90°,
    ∵四边形OABC为矩形,
    ∴AB=OC=8,OA=CB=6,∠ABP=90°,
    ∴∠BAP+∠APB=90°,
    ∴∠BAP=∠FPD,
    在△ABP和△PFD中,

    ∴△ABP≌△PFD(AAS),
    ∴BP=FD=x-8,AB=PF=8,
    ∴CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,
    解得x=,
    ∴,
    ∴点D;


    当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,
    ∴∠EAD +∠PAF=90°,
    过D作DE⊥y轴于E,过P作PF⊥y轴于F,
    ∴∠DEA=∠PFA=90°,
    ∴∠FAP+∠FPA=90°,
    ∴∠FPA=∠EAD,
    ∵四边形OABC为矩形,
    ∴AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,
    ∵∠PFA=90°,
    ∴四边形AFPB为矩形,
    ∴PF=AB=8,
    在△APF和△DAE中,

    ∴△APF≌△DAE(AAS),
    ∴FP=AE=8,AF=DE=6-m,
    ∴OE=OA+AE=6+8=14,
    ∴,
    解得:,
    ∵PC=m≥0,
    ∴AF=6-m≤6<10,
    ∴此种情况不成立;


    综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
    【点睛】
    本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.

    相关试卷

    初中数学第十五章 四边形综合与测试当堂达标检测题:

    这是一份初中数学第十五章 四边形综合与测试当堂达标检测题,共25页。试卷主要包含了下列说法中,正确的是,以下分别是回收,平行四边形中,,则的度数是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试达标测试:

    这是一份数学八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    2021学年第十五章 四边形综合与测试练习:

    这是一份2021学年第十五章 四边形综合与测试练习,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map