北京课改版八年级下册第十五章 四边形综合与测试课后练习题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共31页。
京改版八年级数学下册第十五章四边形章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )
A.梯形的下底是上底的两倍 B.梯形最大角是
C.梯形的腰与上底相等 D.梯形的底角是
2、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
3、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
4、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
A. B. C. D.
5、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为( )
A.4:1 B.5:1 C.6:1 D.7:1
6、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为( )
A.(,1) B.(1,1) C.(1,) D.(+1,1)
7、下列图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )
A.7 B.8 C.9 D.10
9、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )
A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
10、下列几何图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.
2、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_________.
3、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点.若,.则图中影部分的面积和为 __(结果保留根号和.
4、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.
5、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.
(1)则∠CDF=
(2)若ED=CD,AE=BC,求证:AF=BF.
2、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.
(1)求证:四边形ADCE是菱形;
(2)若AB=8,∠DAE=60°,则△ACB的面积为 (直接填空).
3、△ABC为等边三角形,AB=4,AD⊥BC于点D,E为线段AD上一点,AE=.以AE为边在直线AD右侧构造等边△AEF.连结CE,N为CE的中点.
(1)如图1,EF与AC交于点G,
①连结NG,求线段NG的长;
②连结ND,求∠DNG的大小.
(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α.M为线段EF的中点.连结DN、MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论.
4、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形.画出所有情况(给出的图形不一定全用,不够可添加).
5、综合与实践
(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .
(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为 .
-参考答案-
一、单选题
1、D
【分析】
如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.
【详解】
解:如图,,
,
,
,
梯形是等腰梯形,
,
则梯形最大角是,选项B正确;
没有指明哪个角是底角,
梯形的底角是或,选项D错误;
如图,连接,
,
是等边三角形,
,
,
点共线,
,
,
,
四边形是平行四边形,
,
,
,
,,
四边形是菱形,
,
,,选项A、C正确;
故选:D.
【点睛】
本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.
2、B
【详解】
解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
3、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
4、B
【分析】
根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
【详解】
解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.
∵一个直角三角形的周长为3+,
∴AB+BC=3+-2=1+.
等式两边平方得(AB+BC)2= (1+) 2,
即AB2+BC2+2AB•BC=4+2,
∵AB2+BC2=AC2=4,
∴2AB•BC=2,AB•BC=,
即三角形的面积为×AB•BC=.
故选:B.
【点睛】
本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
5、B
【分析】
根据平行四边形的性质先求出∠B的度数,即可得到答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B=180°-∠A=150°,
∴∠B:∠A=5:1,
故选B.
【点睛】
本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.
6、B
【分析】
作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
【详解】
:作CD⊥x轴于点D,
则∠CDO=90°,
∵四边形OABC是菱形,OA=,
∴OC=OA=,
又∵∠AOC=45°,
∴∠OCD=90°-∠AOC=90°-45°=45°,
∴∠DOC=∠OCD,
∴CD=OD,
在Rt△OCD中,OC=,CD2+OD2=OC2,
∴2OD2=OC2=2,
∴OD2=1,
∴OD=CD=1(负值舍去),
则点C的坐标为(1,1),
故选:B.
【点睛】
此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
7、B
【详解】
A.是轴对称图形,不是中心对称图形,故不符合题意;
B. 既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
故选B
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
8、D
【分析】
根据多边形外角和定理求出正多边形的边数.
【详解】
∵正多边形的每一个外角都等于36°,
∴正多边形的边数==10.
故选:D.
【点睛】
本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
9、B
【分析】
由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
C、是轴对称图形,不是中心对称图形,故此选项不合题意;
D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;
B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;
D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;
故选D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、或或3
【分析】
过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:,
有三种情况:
①当AB=BP=3时,如图1,过B作BM⊥AC于M,
S△ABC=,
,
解得:,
∵AB=BP=3,BM⊥AC,
∴,
∴AP=AM+PM=,
∴△PAB的面积=;
②当AB=AP=3时,如图2,
∵BM=,
∴△PAB的面积S=;
③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,
∵四边形ABCD是矩形,NQ⊥AC,
∴PN∥BC,
∵AN=BN,
∴AP=CP,
∴,
∴△PAB的面积;
即△PAB的面积为或或3.
故答案为:或或3.
【点睛】
本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
2、
【分析】
根据正方形的对角线平分一组对角线可得∠OCD=∠ODB=45°,正方形的对角线互相垂直平分且相等可得∠COD=90°,OC=OD,然后根据同角的余角相等求出∠COA=∠DOB,再利用“ASA”证明△COA和△DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到△AOB是等腰直角三角形,再根据垂线段最短可得OA⊥CD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答.
【详解】
解:如图,
∵四边形CDEF是正方形,
,
,
,
在与中,
,
,
∴OA=OB,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得: ,
要使AB最小,只要OA取最小值即可,
根据垂线段最短,OA⊥CD时,OA最小,
∵正方形CDEF,
∴FC⊥CD,OD=OF,
∴CA=DA,
∴OA=,
∴AB=.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB是等腰直角三角形是解题的关键.
3、
【分析】
设的中点为,连接,先求出,,则,,然后求出,最后根据求解即可.
【详解】
解:设的中点为,连接,
,四边形ABCD是矩形,
,∠ABC=90°,
又∵∠CAB=30°,
∴,
∴,
∴,
,
,
,
∴.
故答案为:.
【点睛】
本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到.
4、10
【分析】
过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
【详解】
解:过E作EF⊥AD于F,
∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
∴△ANM≌△ENM,
∴AM=EM,
∵矩形ABCD,
∴∠B=∠A=∠D=90°,
∵FE⊥AD,
∴∠AFE=∠B=∠A=90°,
∴四边形ABEF为矩形,
∴AF=BE=4,FE=AB=8,
设AM=EM=m,FM=m-4
在Rt△FEM中,根据勾股定理,即,
解得m=10,
∴MD=AD-AM=16-10=6,
在Rt△MDC中,
∴MC=.
故答案为10.
【点睛】
本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
5、##
【分析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:,,,
,
∴∠ABC=90°,
∵点D为AC的中点,
∴BD为AC边上的中线,
∴BD=AC,
故答案为:
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
三、解答题
1、(1)54°;(2)见解析.
【分析】
(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;
(2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.
【详解】
解:(1)∵五边形ABCDE的内角都相等,
∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,
∵DF⊥AB,
∴∠DFB=90°,
∴∠CDF=360°﹣90°﹣108°﹣108°=54°,
故答案为:54°.
(2)连接AD、DB,
在△AED和△BCD中,
,
∴△DEA≌△DCB(SAS),
∴AD=DB,
∵DF⊥AB,
∴AF=BF.
【点睛】
本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.
2、(1)见解析;(2)
【分析】
(1)由AD//CE,CD//AE ,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;
(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.
【详解】
解:(1)∵∥,∥,
∴四边形是平行四边形.
∵,是的中点,
∴,
∴四边形是菱形;
(2)∵四边形是菱形,,
∴.
∵在Rt△中,,,,
∴,
∴.
∴.
【点睛】
此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.
3、(1)①;②;(2)的大小是定值,证明见解析.
【分析】
(1)①先根据等边三角形的性质、勾股定理可得,从而可得,再利用勾股定理可得,然后根据等边三角形的性质可得,最后根据直角三角形斜边上的中线等于斜边的一半即可得;
②先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据四边形的内角和即可得;
(2)连接,先证出,根据全等三角形的性质可得,从而可得,再根据三角形中位线定理可得,然后根据三角形的外角性质、角的和差即可得出结论.
【详解】
解:(1)①∵是等边三角形,,,
∴,
∴,
∵,
∴,
∴,
∵是等边三角形,
,
,
∴,即,
又∵点为的中点,
∴;
②如图,连接,
由(1)①知,,
∵,点为的中点,
∴,
,
,
∴;
(2)的大小是定值,证明如下:
如图,连接,
∵和都是等边三角形,
∴,
∴,即,
在和中,,
∴,
∴,
∵,
∴,
∵点为的中点,点为的中点,
∴,
∴,
∵,即点是的中点,
∴,
∴,
∵,
∴
,
∴的大小为定值.
【点睛】
本题考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和利用到三角形中位线定理是解题关键.
4、见解析
【分析】
根据中心对称图形的概念求解即可.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:如图所示,一共有三种情况:
【点睛】
此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
5、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析
【分析】
(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.
【详解】
解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,
在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,
∴∠BCM'+∠BCD=180°,
∴点M'、C、N三点共线,
∵∠MBN=45°,
∴∠ABM+∠CBN=45°,
∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,
即∠M'BN=∠MBN,
∵BN=BN,
∴△NBM≌△NBM',
∴MN= M'N,
∵M'N= M'C+CN,
∴MN= M'C+CN=AM+CN;
(2)MN=AM+CN;理由如下:
如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,
∵∠A+∠C=180°,
∴∠BCM'+∠BCD=180°,
∴点M'、C、N三点共线,
∵∠MBN=∠ABC,
∴∠ABM+∠CBN=∠ABC=∠MBN,
∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,
∵BN=BN,
∴△NBM≌△NBM',
∴MN= M'N,
∵M'N= M'C+CN,
∴MN= M'C+CN=AM+CN;
(3)MN=CN-AM,理由如下:
如图,在NC上截取C M'=AM,连接B M',
∵在四边形ABCD中,∠ABC+∠ADC=180°,
∴∠C+∠BAD=180°,
∵∠BAM+∠BAD=180°,
∴∠BAM=∠C,
∵AB=BC,
∴△ABM≌△CB M',
∴AM=C M',BM=B M',∠ABM=∠CB M',
∴∠MA M'=∠ABC,
∵∠MBN=∠ABC,
∴∠MBN=∠MA M'=∠M'BN,
∵BN=BN,
∴△NBM≌△NBM',
∴MN= M'N,
∵M'N=CN-C M',
∴MN=CN-AM.
故答案是:MN=CN-AM.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.
相关试卷
这是一份北京课改版第十五章 四边形综合与测试巩固练习,共28页。试卷主要包含了下列∠A,如图,在六边形中,若,则,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共27页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共27页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。