![2021-2022学年最新京改版八年级数学下册第十五章四边形同步测试试题第1页](http://img-preview.51jiaoxi.com/2/3/12704842/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新京改版八年级数学下册第十五章四边形同步测试试题第2页](http://img-preview.51jiaoxi.com/2/3/12704842/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新京改版八年级数学下册第十五章四边形同步测试试题第3页](http://img-preview.51jiaoxi.com/2/3/12704842/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共35页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
A. B. C. D.
2、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
3、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
4、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
5、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )
A.180° B.220° C.240° D.260°
6、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cm B.22.5cm C.23.25cm D.以上都不对
7、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
8、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
9、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
A.5 B.4 C.3 D.2
10、下列图形中,是中心对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.
2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.
3、如图,在四边形中,,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_______.
4、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB长度的最小值为_________.
5、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
三、解答题(5小题,每小题10分,共计50分)
1、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类似的思想提出了如下命题:
③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
任务要求:
(1)请你从①②③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索;
①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
2、如图1,在平面直角坐标系中,且;
(1)试说明是等腰三角形;
(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
①若的一条边与BC平行,求此时点M的坐标;
②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
3、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PC=m.
(1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为 ,此时若△APD是等腰直角三角形,求点D的坐标;
(2)直线y=2x+b过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.
4、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).
5、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三边长都是有理数的直角三角形;
(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;
(3)在图3中,画一个正方形,使它的面积是10.
-参考答案-
一、单选题
1、C
【分析】
根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
【详解】
解:∵点P是∠AOB平分线上的一点,,
∴,
∵PD⊥OA,M是OP的中点,
∴,
∴
∵点C是OB上一个动点
∴当时,PC的值最小,
∵OP平分∠AOB,PD⊥OA,
∴最小值,
故选C.
【点睛】
本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
2、B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
3、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
4、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
5、C
【分析】
根据四边形内角和为360°及等边三角形的性质可直接进行求解.
【详解】
解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,
∴;
故选C.
【点睛】
本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.
6、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
7、A
【分析】
根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
【详解】
解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
A选项是中心对称图形.故本选项正确.
故选:A.
【点睛】
本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
8、D
【分析】
根据轴对称图形与中心对称图形的概念求解即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项符合题意;
D.是轴对称图形,也是中心对称图形,故此选项不合题意.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
9、A
【分析】
利用直角三角形斜边的中线的性质可得答案.
【详解】
解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.
【点睛】
此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
10、B
【分析】
根据中心对称图形的定义求解即可.
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
【点睛】
此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
二、填空题
1、或.
【分析】
根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.
【详解】
解:∵以单位长度为边长画一个正方形,
∴正方形面积为1,
∴,
∴AB=,
∵点A在1的位置,
∴圆与数轴的交点对应的数为或.
故答案为或.
【点睛】
本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键
2、16
【分析】
由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.
【详解】
∵四边形ABCD是菱形,且对角线相交于点O
∴点O是AC的中点
∵E为DC的中点
∴OE为△CAD的中位线
∴AD=2OE=2×2=4
∴菱形的周长为:4×4=16
故答案为:16
【点睛】
本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.
3、4
【分析】
根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EM∥AB,FM∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可.
【详解】
解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,
∵∠ABC+∠DCB=90°,
∵E、F、M分别是AD、BC、BD的中点,
∴EM=AB,FM=CD,EM∥AB,FM∥CD,
∴∠ABC=∠ENC,∠MFN=∠C,
∴∠MNF+∠MFN=90°,
∴∠NMF=180°-90°=90°,
∴∠EMF=90°,
由勾股定理得:ME2+FM2=EF2,
∴阴影部分的面积是:π(ME2+FM2)=EF2π=8π,
∴EF=4.
故答案为:4.
【点睛】
本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键.
4、
【分析】
根据正方形的对角线平分一组对角线可得∠OCD=∠ODB=45°,正方形的对角线互相垂直平分且相等可得∠COD=90°,OC=OD,然后根据同角的余角相等求出∠COA=∠DOB,再利用“ASA”证明△COA和△DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到△AOB是等腰直角三角形,再根据垂线段最短可得OA⊥CD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答.
【详解】
解:如图,
∵四边形CDEF是正方形,
,
,
,
在与中,
,
,
∴OA=OB,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得: ,
要使AB最小,只要OA取最小值即可,
根据垂线段最短,OA⊥CD时,OA最小,
∵正方形CDEF,
∴FC⊥CD,OD=OF,
∴CA=DA,
∴OA=,
∴AB=.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB是等腰直角三角形是解题的关键.
5、七
【分析】
根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
【详解】
解:设多边形的边数为n,则
(n-2)•180°-2×360°=180°,
解得n=7.
故答案为:七.
【点睛】
本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
三、解答题
1、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
【分析】
(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
【详解】
解:(1)如选命题①,证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCAN中,
,
∴ ,
∴ ;
如选命题②,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
如选命题③,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
(2)①根据(1)中规律可得:当时,结论成立;
②答:当时,成立.
证明:如图所示,连接BD、CE,
在和中,
,
∴ ,
∴ ,,,
∵ ,
∴ ,
∵ ,.
∴ ,
又∵ ,
∴ ,
在和中,
,
∴ ,
∴ .
【点睛】
题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
2、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】
(1)设,,,则,由勾股定理求出,即可得出结论;
(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
(3)①分当时,;当时,;得出方程,解方程即可;
②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
【详解】
解:(1)证明:设,,,则,
在中,,
,
∴是等腰三角形;
(2)∵,,
∴,
∴,,,.
∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
故答案为:12,0;-8,0;0,16;
(3)①如图3-1所示,
当MN∥BC时,
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴AM=BM,
∴M为AB的中点,
∵,
∴,
∴,
∴点M的坐标为(2,0);
如图3-2所示,当ON∥BC时,
同理可得,
∴,
∴M点的坐标为(4,0);
∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,
∵E是AC的中点,∠AOC=90°,,
∴,
∴此时M的坐标为(0,10);
如图3-4所示,当时,
∴此时M点与A点重合,
∴M点的坐标为(12,0);
如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
∵OE=AE,EF⊥OA,
∴,
∴,
设,则,
∵,
∴,
解得,
∴M点的坐标为(,0);
综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【点睛】
本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
3、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
【分析】
(1)过点D作DE⊥y轴于E,PF⊥y轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点D(n,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y=2x+6上,求出n=4即可;
(2)直线y=2x+b过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可
【详解】
解:(1)过点D作DE⊥y轴于E,PF⊥y轴于F,
设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,
∴x=n,y=2n+6,
∴点D(n,2n+6),
∵△APD是等腰直角三角形,
∴DA=AP,∠DAP=90°,
∴∠DAE+∠FAP=180°-∠DAP=90°,
∵DE⊥y轴,PF⊥y轴,
∴∠DEA=∠AFP=90°,
∴∠EDA+∠DAE=90°,
∴∠EDA=∠FAP,
在△EDA和△FAP中,
,
∴△EDA≌△FAP(AAS),
∴AE=PF,ED=FA,
∵四边形OABC为矩形,B的坐标为(8,6),
∴AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,
∵∠AFP=90°,
∴四边形AFPB为矩形,
∴PF=AB=8,
∴EA=FP=8,
∴OE=OA+AE=6+8=14,
∴点D(n,14),
∵点D在直线y=2x+6上,
∴14=2n+6,,
∴n=4,
∴点D(4,14);
(2)直线y=2x+b过点(3,0),
∴0=6+b,
∴b =-6,
∴直线y=2x-6,
设点D(x, 2x-6),
过点D作EF⊥y轴,交y轴于E,交CB延长线于F,
要使△ADP为等腰直角三角形,
当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,
∴∠ADE+∠FDP=180°-∠ADP=90°,
∵DE⊥y轴,PF⊥y轴,
∴∠DEA=∠AFP=90°,
∴∠EDA+∠DAE=90°,
∴∠EAD=∠FDP,
在△EDA和△FPD中,
,
∴△EDA≌△FPD(AAS),
∴AE=DF=2x-6-8=2x-14,ED=FP=x,
∵四边形OABC为矩形,AB=OC=8,OA=BC=6,
∴∠OCF=90°,
∴四边形OCFE为矩形,EF=OC=8,
∴DE+DF=x+2x-14=8,
解得x=,
∴,
∴点D;
当∠APD=90°,AP=DP,△ADP为等腰直角三角形,
∴∠APB+∠DPF=90°,
过D作DF⊥射线CB于F,
∴∠DFP=90°,
∵四边形OABC为矩形,
∴AB=OC=8,OA=CB=6,∠ABP=90°,
∴∠BAP+∠APB=90°,
∴∠BAP=∠FPD,
在△ABP和△PFD中,
,
∴△ABP≌△PFD(AAS),
∴BP=FD=x-8,AB=PF=8,
∴CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,
解得x=,
∴,
∴点D;
当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,
∴∠EAD +∠PAF=90°,
过D作DE⊥y轴于E,过P作PF⊥y轴于F,
∴∠DEA=∠PFA=90°,
∴∠FAP+∠FPA=90°,
∴∠FPA=∠EAD,
∵四边形OABC为矩形,
∴AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,
∵∠PFA=90°,
∴四边形AFPB为矩形,
∴PF=AB=8,
在△APF和△DAE中,
,
∴△APF≌△DAE(AAS),
∴FP=AE=8,AF=DE=6-m,
∴OE=OA+AE=6+8=14,
∴,
解得:,
∵PC=m≥0,
∴AF=6-m≤6<10,
∴此种情况不成立;
综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
【点睛】
本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.
4、(1)见解析;(2)见解析
【分析】
(1)直接利用轴对称图形的性质得出符合题意的答案;
(2)直接利用中心对称图形的性质得出符合题意的答案.
【详解】
解:(1)如图所示:①②③都是轴对称图形;
(2)如图所示:④⑤都是中心对称图形.
.
【点睛】
此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.
5、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;
(2)如图, ,,利用勾股定理逆定理即可得到△ABC是直角三角形;
(3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,.
【详解】
解:(1)如图所示,AB=4,BC=3,,
∴,
∴△ABC是直角三角形;
(2)如图所示, ,
∴,
∴△ABC是直角三角形;
(3)如图所示,, ,
∴,
∴∠ABC=90°,
∴四边形ABCD是正方形,
∴.
【点睛】
本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.
相关试卷
这是一份2021学年第十五章 四边形综合与测试同步测试题,共32页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共24页。试卷主要包含了下列∠A,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试课后复习题,共25页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)