![2021-2022学年最新京改版八年级数学下册第十五章四边形专题测试试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12705608/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新京改版八年级数学下册第十五章四边形专题测试试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12705608/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新京改版八年级数学下册第十五章四边形专题测试试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12705608/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版八年级下册第十五章 四边形综合与测试习题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共19页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )
A.B.
C.D.
2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )
A.5B.6C.8D.10
3、下列图案中,是中心对称图形,但不是轴对称图形的是( )
A.B.
C.D.
4、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )
A.①④⇒⑥B.①③⇒⑤C.①②⇒⑥D.②③⇒④
5、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为( )
A.6B.6.5C.10D.13
6、如图,四边形ABCD是平行四边形,下列结论中错误的是( )
A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BD
C.当▱ABCD是正方形时,AC=BDD.当▱ABCD是菱形时,AB=AC
7、下列图标中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
8、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )
A.可回收物B.有害垃圾C.厨余垃圾D.其他垃圾
9、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为( )
A.(,1)B.(1,1)C.(1,)D.(+1,1)
10、下列图形中不是中心对称图形的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.
2、若一个菱形的两条对角线的长为3和4,则菱形的面积为___________.
3、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.
4、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.
5、正方形的一条对角线长为4,则这个正方形面积是_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形.画出所有情况(给出的图形不一定全用,不够可添加).
2、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.
(1)若,求线段AC的长;
(2)求证:.
3、“三等分一个任意角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的.有人曾利用如图所示的图形进行探索,其中ABCD是长方形,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.请写出∠ECB和∠ACB的数量关系,并说明理由.
4、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.
(1)则∠CDF=
(2)若ED=CD,AE=BC,求证:AF=BF.
5、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).
-参考答案-
一、单选题
1、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
2、A
【分析】
由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
【详解】
解:∵四边形ABCD是菱形,AC=6,BD=8,
∴OA=OC=3,OB=OD=4,AO⊥BO,
在Rt△AOB中,由勾股定理得:,
故选:A.
【点睛】
本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
3、C
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,本选项不符合题意;
C.是中心对称图形,但不是轴对称图形,本选项符合题意;
D.既是轴对称图形,又是中心对称图形,本选项不符合题意;
故选:C.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
4、C
【分析】
根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
【详解】
解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
故选:C.
【点睛】
本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
5、B
【分析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:∵直角三角形两直角边长为5和12,
∴斜边=,
∴此直角三角形斜边上的中线的长==6.5.
故选:B.
【点睛】
本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.
6、D
【分析】
由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.
【详解】
解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;
当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;
当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;
当▱ABCD是菱形时,AB=BC,故D符合题意;
故选D
【点睛】
本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.
7、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
8、B
【分析】
由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
C、是轴对称图形,不是中心对称图形,故此选项不合题意;
D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、B
【分析】
作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
【详解】
:作CD⊥x轴于点D,
则∠CDO=90°,
∵四边形OABC是菱形,OA=,
∴OC=OA=,
又∵∠AOC=45°,
∴∠OCD=90°-∠AOC=90°-45°=45°,
∴∠DOC=∠OCD,
∴CD=OD,
在Rt△OCD中,OC=,CD2+OD2=OC2,
∴2OD2=OC2=2,
∴OD2=1,
∴OD=CD=1(负值舍去),
则点C的坐标为(1,1),
故选:B.
【点睛】
此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
10、B
【分析】
根据中心对称图形的概念求解.
【详解】
解:A、是中心对称图形,故本选项不合题意;
B、不是中心对称图形,故本选项符合题意;
C、是中心对称图形,故本选项不合题意;
D、是中心对称图形,故本选项不合题意.
故选:B.
【点睛】
本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
二、填空题
1、或.
【分析】
根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.
【详解】
解:∵以单位长度为边长画一个正方形,
∴正方形面积为1,
∴,
∴AB=,
∵点A在1的位置,
∴圆与数轴的交点对应的数为或.
故答案为或.
【点睛】
本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键
2、6
【分析】
由题意直接由菱形的面积等于对角线乘积的一半进行计算即可.
【详解】
解:菱形的面积.
故答案为:6.
【点睛】
本题考查菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.
3、25°
【分析】
利用翻折变换的性质即可解决.
【详解】
解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,
∵∠EF+∠AEF+∠EC+∠BEC=180°,
∴∠EF+∠AEF=50°,
∴∠AEF=25°,
故答案为:25°.
【点睛】
本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.
4、(8,0)或(-2,0)-2,0)或(8,0)
【分析】
由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.
【详解】
解:∵四边形OABC矩形,且点A(3,0),点C(0,9),
∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,
∵将△ABC沿DE对折,恰好能使点A与点C重合.
∴AE=CE,
∵CE2=BC2+BE2,
∴CE2=9+(9-CE)2,
∴CE=5,
∴AE=5,
∵△AEP为等腰三角形,且∠EAP=90°,
∴AE=AP=5,
∴点E坐标(8,0)或(-2,0)
故答案为:(8,0)或(-2,0)
【点睛】
本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.
5、8
【分析】
正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.
【详解】
解:设边长为,对角线为
故答案为:.
【点睛】
本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.
三、解答题
1、见解析
【分析】
根据中心对称图形的概念求解即可.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:如图所示,一共有三种情况:
【点睛】
此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
2、(1);(2)见解析
【分析】
(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;
(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.
【详解】
(1)
,
;
(2)连接DE
,
,
,,
,
,
.
【点睛】
本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.
3、∠ACB=3∠ECB,见解析.
【分析】
由矩形的对边平行可得∠F=∠ECB,由外角等于和它不相邻的两个内角的和可得∠AGC=2∠F,那么∠ECB=∠F,所以∠ACB=3∠ECB.
【详解】
解:∠ACB=3∠ECB.
理由如下:在△AGF中,∠AGC=∠F+∠GAF=2∠F.
∵∠ACG=∠AGC,
∴∠ACG=2∠F.
∵AD//BC,
∴∠ECB=∠F.
∴∠ACB=∠ACG+∠BCE=3∠F.
故∠ACB=3∠ECB.
【点睛】
本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.
4、(1)54°;(2)见解析.
【分析】
(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;
(2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.
【详解】
解:(1)∵五边形ABCDE的内角都相等,
∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,
∵DF⊥AB,
∴∠DFB=90°,
∴∠CDF=360°﹣90°﹣108°﹣108°=54°,
故答案为:54°.
(2)连接AD、DB,
在△AED和△BCD中,
,
∴△DEA≌△DCB(SAS),
∴AD=DB,
∵DF⊥AB,
∴AF=BF.
【点睛】
本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.
5、(1)见解析;(2)见解析
【分析】
(1)直接利用轴对称图形的性质得出符合题意的答案;
(2)直接利用中心对称图形的性质得出符合题意的答案.
【详解】
解:(1)如图所示:①②③都是轴对称图形;
(2)如图所示:④⑤都是中心对称图形.
.
【点睛】
此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共23页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共23页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共34页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)