年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析京改版八年级数学下册第十五章四边形综合训练练习题(无超纲)

    2022年必考点解析京改版八年级数学下册第十五章四边形综合训练练习题(无超纲)第1页
    2022年必考点解析京改版八年级数学下册第十五章四边形综合训练练习题(无超纲)第2页
    2022年必考点解析京改版八年级数学下册第十五章四边形综合训练练习题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共33页。
    京改版八年级数学下册第十五章四边形综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )

    A.120° B.118° C.110° D.108°
    2、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为(  )

    A.25° B.20° C.15° D.10°
    3、下列命题是真命题的是( )
    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边
    C.内错角相等 D.对角线互相垂直的四边形是菱形
    4、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )

    A.180° B.220° C.240° D.260°
    5、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )

    A.1 B. C. D.2
    6、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为(  )

    A. B. C.4.5 D.4.3
    7、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )

    A.梯形的下底是上底的两倍 B.梯形最大角是
    C.梯形的腰与上底相等 D.梯形的底角是
    8、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
    A. B. C. D.
    9、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )

    A.5 B.6 C.8 D.10
    10、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
    A.46.5cm B.22.5cm C.23.25cm D.以上都不对
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,与点关于原点对称的点的坐标是________.
    2、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.

    3、一个多边形,每个外角都是,则这个多边形是________边形.
    4、如图,在矩形ABCD中,AB=2,AD=2,E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.


    5、若点关于原点的对称点是,则______.
    三、解答题(5小题,每小题10分,共计50分)
    1、(阅读材料)
    材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;
    材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以.

    (解决问题)如图3,图中由三个正方形组成的图形
    (1)请你直接写出图中所有的全等三角形;
    (2)任意选择一组全等三角形进行证明;
    (3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值.

    2、如图,一次函数y=- x+3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,∠BAC=90°,
    (1)求过B,C两点的直线的解析式.
    (2)作正方形ABDC,求点D的坐标.

    3、如图,在正方形ABCD中,DF=AE,AE与DF相交于点O.
    (1)求证:△DAF≌△ABE;
    (2)求∠AOD的度数.

    4、如图1,在平面直角坐标系中,且;

    (1)试说明是等腰三角形;
    (2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
    (3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
    ①若的一条边与BC平行,求此时点M的坐标;
    ②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.
    5、如图,在△ABC中,,,延长CB,并将射线CB绕点C逆时针旋转90°得到射线l,D为射线l上一动点,点E在线段CB的延长线上,且,连接DE,过点A作于M.
    (1)依题意补全图1,并用等式表示线段DM与ME之间的数量关系,并证明;
    (2)取BE的中点N,连接AN,添加一个条件:CD的长为_______,使得成立,并证明.


    -参考答案-
    一、单选题
    1、D
    【分析】
    由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
    【详解】
    解:∵五边形ABCDE为正五边形,
    ∴AB=BC,∠ABM=∠C,
    在△ABM和△BCN中

    ∴△ABM≌△BCN(SAS),
    ∴∠BAM=∠CBN,
    ∵∠BAM+∠ABP=∠APN,
    ∴∠CBN+∠ABP=∠APN=∠ABC=
    ∴∠APN的度数为108°;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
    2、D
    【分析】
    根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠ABC=90°,CD∥AB,
    ∴∠ABD=∠1=40°,
    ∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.
    【点睛】
    本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
    3、B
    【分析】
    利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
    【详解】
    解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
    B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
    C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
    D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
    故选:B.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
    4、C
    【分析】
    根据四边形内角和为360°及等边三角形的性质可直接进行求解.
    【详解】
    解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,
    ∴;
    故选C.
    【点睛】
    本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.
    5、B
    【分析】
    作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
    【详解】
    解:如图,在线段AD上截取AM,使AM=AE,

    ∵AD=AB,
    ∴DM=BE,
    ∵点A关于直线DE的对称点为F,
    ∴△ADE≌△FDE,
    ∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
    ∴∠DFG=90°,
    在Rt△DFG和Rt△DCG中,
    ∵,
    ∴Rt△DFG≌Rt△DCG(HL),
    ∴∠3=∠4,
    ∵∠ADC=90°,
    ∴∠1+∠2+∠3+∠4=90°,
    ∴2∠2+2∠3=90°,
    ∴∠2+∠3=45°,
    即∠EDG=45°,
    ∵EH⊥DE,
    ∴∠DEH=90°,△DEH是等腰直角三角形,
    ∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
    ∴∠1=∠BEH,
    在△DME和△EBH中,
    ∵,
    ∴△DME≌△EBH(SAS),
    ∴EM=BH,
    Rt△AEM中,∠A=90°,AM=AE,
    ∴,
    ∴ ,即=.
    故选:B.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
    6、A
    【分析】
    根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠B=∠DCF=90°,BC=DC,
    在△CBE和△DCF中,

    ∴△CBE≌△DCF(SAS),
    ∴∠BCE=∠CDF,
    ∵∠BCE+∠DCH=90°,
    ∴∠CDF+∠DCH=90°,
    ∴∠DHC=∠DHE=90°,
    ∵点G为DE的中点,
    ∴GH=DE,
    ∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
    ∴,
    ∴GH=.
    故选A.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
    7、D
    【分析】
    如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.
    【详解】
    解:如图,,



    梯形是等腰梯形,

    则梯形最大角是,选项B正确;
    没有指明哪个角是底角,
    梯形的底角是或,选项D错误;
    如图,连接,

    是等边三角形,


    点共线,



    四边形是平行四边形,



    ,,
    四边形是菱形,

    ,,选项A、C正确;
    故选:D.

    【点睛】
    本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.
    8、B
    【分析】
    根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
    【详解】
    解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.

    ∵一个直角三角形的周长为3+,
    ∴AB+BC=3+-2=1+.
    等式两边平方得(AB+BC)2= (1+) 2,
    即AB2+BC2+2AB•BC=4+2,
    ∵AB2+BC2=AC2=4,
    ∴2AB•BC=2,AB•BC=,
    即三角形的面积为×AB•BC=.
    故选:B.
    【点睛】
    本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
    9、A
    【分析】
    由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
    【详解】
    解:∵四边形ABCD是菱形,AC=6,BD=8,
    ∴OA=OC=3,OB=OD=4,AO⊥BO,
    在Rt△AOB中,由勾股定理得:,
    故选:A.
    【点睛】
    本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
    10、C
    【分析】
    如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
    【详解】
    解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
    ∴,,,
    ∴△DEF的周长,
    同理可得:△GHI的周长,
    ∴第三次作中位线得到的三角形周长为,
    ∴第四次作中位线得到的三角形周长为
    ∴第三次作中位线得到的三角形周长为
    ∴这五个新三角形的周长之和为,
    故选C.

    【点睛】
    本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
    二、填空题
    1、(-3,-1)
    【分析】
    由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.
    【详解】
    解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).
    故答案为:(-3,-1).
    【点睛】
    本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
    2、
    【分析】
    设 则再利用矩形的性质建立方程求解 从而可得答案.
    【详解】
    解: 四边形BHDG为菱形,


    AD=3AB,
    设 则

    矩形ABCD,


    解得:


    故答案为:
    【点睛】
    本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.
    3、六6
    【分析】
    根据正多边形的性质,边数等于360°除以每一个外角的度数.
    【详解】
    ∵一个多边形的每个外角都是60°,
    ∴n=360°÷60°=6,
    故答案为:六.
    【点睛】
    本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.
    4、
    【分析】
    如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=.
    【详解】
    如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形
    故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大
    ∵矩形ABCD中,AB=2,AD=2
    ∴∠ABD=60°
    ∴∠ABF=60°-30°=30°
    ∴AF=
    ∴FG=AD-AF=.
    故答案为:.

    【点睛】
    本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.
    5、
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:由关于坐标原点的对称点为,得,

    解得:
    故答案为:.
    【点睛】
    本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    三、解答题
    1、(1);;;(2)证明;证明见解析;(3),
    【分析】
    (1)根据图形可得出三对全等三角形;
    (2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;
    (3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,即可得出.
    【详解】
    解:(1);;
    (2)证明;
    由题意得,在正方形ABCD中,
    ∵,,
    在和中


    证明:;
    由题意得,在正方形HIJK中,
    ,,
    ∵AC为正方形ABCD的对角线,
    ∴,
    在RtΔAHK和RtΔCIJ中

    ∴RtΔAHK≅RtΔCIJ;
    证明:
    由题意得,在正方形EBFG中,
    ,,
    ∵AC为正方形ABCD的对角线,
    ∴,
    在RtΔAEG和RtΔCFG中

    ∴RtΔAEG≅RtΔCFG;
    (3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,

    SΔABC=SΔADC=12×6×6=18.

    连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,
    ∴.
    ∴,.
    【点睛】
    题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.
    2、(1),(2)(3,7)
    【分析】
    (1)先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;
    (2)由正方形的性质以及△ABO≌△CAE,同理可得△ABO≌△BDM,进而可得点D的坐标.
    【详解】
    (1)∵一次函数y=-x+3中,
    令x=0得:y=3,令y=0,解得x=4,
    ∴B的坐标是(0,3),A的坐标是(4,0),
    如图,作CE⊥x轴于点E,


    ∵∠BAC=90°,
    ∴∠OAB+∠CAE=90°,
    又∵∠CAE+∠ACE=90°,
    ∴∠ACE=∠BAO.
    在△ABO与△CAE中,

    ∴△ABO≌△CAE(AAS),
    ∴OB=AE=3,OA=CE=4,OE=OA+AE=7,
    则点C的坐标是(7,4),
    设直线BC的解析式是y=kx+b(k≠0),
    根据题意得:,
    解得,
    ∴直线BC的解析式是y=x+3.
    (2)如图,作DM⊥y轴于点M,


    ∵四边形ABDC为正方形,由(1)知△ABO≌△CAE,
    同理可得:△ABO≌△BDM,
    ∴DM=OB=3,BM=OA=4,OM=OB+BM=7,
    则点D的坐标是(3,7).
    【点睛】
    本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形.
    3、(1)见解析;(2)90°
    【分析】
    (1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,再证明Rt△DAF≌Rt△ABE即可得出结论;
    (2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠BAE+∠DFA=90°,最后用三角形的内角和定理即可得出结论.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴∠DAB=∠ABC=90°,AD=AB,
    在Rt△DAF和Rt△ABE中,

    ∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.
    (2)解:由(1)知,△DAF≌△ABE,
    ∴∠ADF=∠BAE,
    ∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,
    ∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出Rt△DAF≌Rt△ABE是解本题的关键.
    4、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【分析】
    (1)设,,,则,由勾股定理求出,即可得出结论;
    (2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
    (3)①分当时,;当时,;得出方程,解方程即可;
    ②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
    【详解】
    解:(1)证明:设,,,则,
    在中,,

    ∴是等腰三角形;
    (2)∵,,
    ∴,
    ∴,,,.
    ∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
    故答案为:12,0;-8,0;0,16;
    (3)①如图3-1所示,
    当MN∥BC时,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴AM=BM,
    ∴M为AB的中点,
    ∵,
    ∴,
    ∴,
    ∴点M的坐标为(2,0);

    如图3-2所示,当ON∥BC时,
    同理可得,
    ∴,
    ∴M点的坐标为(4,0);
    ∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;

    ②如图3-3所示,当OM=OE时,
    ∵E是AC的中点,∠AOC=90°,,
    ∴,
    ∴此时M的坐标为(0,10);

    如图3-4所示,当时,
    ∴此时M点与A点重合,
    ∴M点的坐标为(12,0);

    如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
    ∵OE=AE,EF⊥OA,
    ∴,
    ∴,
    设,则,
    ∵,
    ∴,
    解得,
    ∴M点的坐标为(,0);
    综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【点睛】
    本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.
    5、(1)DM=ME,见解析;(2),见解析
    【分析】
    (1)补全图形,连接AE、AD,通过∠ABE=∠ACD,AB=AC,BE=CD,证明 △ABE ≌ △ACD,得AE=AD,再利用AM⊥DE于M,即可得到DM=EM.
    (2)连接AD,AE,BM ,可求出,当时,可得,由(1)得DM=EM,可知BM是△CDE的中位线从而得到,BM∥CD,得到∠ABM=135°=∠ABE.因为N为BE中点,可知从而证明△ABN ≌ △ABM得到AN=AM,由(1),△ABE ≌ △ACD,可证明∠EAB=∠DAC,AD=AE进而得到∠EAD=90°,又因为DM=EM,即可得到.
    【详解】
    (1)补全图形如下图,

    DM与ME之间的数量关系为DM=ME.
    证明:连接AE,AD,
    ∵ ∠BAC=90°,AB=AC,

    ∴ ∠ABC=∠ACB=45°.
    ∴ ∠ABE=180°-∠ABC=135°.
    ∵ 由旋转,∠BCD=90°,
    ∴ ∠ACD=∠ACB+∠BCD=135°.
    ∴ ∠ABE=∠ACD.
    ∵ AB=AC,BE=CD,
    ∴ △ABE ≌ △ACD.
    ∴ AE=AD.
    ∵ AM⊥DE于M,
    ∴ DM=EM.
    (2)
    证明:连接AD,AE,BM.
    ∵ AB=AC=1,∠BAC=90°,
    ∴ .
    ∵ ,
    ∴ .
    ∵ 由(1)得DM=EM,
    ∴ BM是△CDE的中位线.
    ∴ ,BM∥CD.
    ∴ ∠EBM=∠ECD=90°.
    ∵ ∠ABE=135°,
    ∴ ∠ABM=135°=∠ABE.
    ∵ N为BE中点,
    ∴ .
    ∴ BM=BN.
    ∵ AB=AB,
    ∴ △ABN ≌ △ABM.
    ∴ AN=AM.
    ∵ 由(1),△ABE ≌ △ACD,
    ∴ ∠EAB=∠DAC,AD=AE.
    ∵ ∠BAC=∠DAC+∠DAB=90°,
    ∴ ∠EAD=90°.
    ∵ DM=EM,
    ∴ .
    ∴ .

    【点睛】
    本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键.

    相关试卷

    初中数学第十五章 四边形综合与测试巩固练习:

    这是一份初中数学第十五章 四边形综合与测试巩固练习,共25页。

    2021学年第十五章 四边形综合与测试练习:

    这是一份2021学年第十五章 四边形综合与测试练习,共32页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map