搜索
    上传资料 赚现金
    英语朗读宝

    2022年京改版八年级数学下册第十五章四边形月考练习题(无超纲)

    2022年京改版八年级数学下册第十五章四边形月考练习题(无超纲)第1页
    2022年京改版八年级数学下册第十五章四边形月考练习题(无超纲)第2页
    2022年京改版八年级数学下册第十五章四边形月考练习题(无超纲)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课后测评

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课后测评,共28页。
    京改版八年级数学下册第十五章四边形月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是(   A. B. C. D.2、下列命题是真命题的是(    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形3、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或24、已知,四边形ABCD的对角线ACBD相交于点O.设有以下条件:①ABAD;②ACBD;③AOCOBODO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是(  )A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④5、下列四个图形中,为中心对称图形的是(  )A.  B. C.  D.6、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等7、在平面直角坐标系中,点关于原点对称的点的坐标是(    A. B. C. D.8、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 (   A.∠DAB′=∠CAB B.∠ACD=∠BCD C.ADAE D.AECE9、已知中,CD是斜边AB上的中线,则的度数是(    A. B. C. D.10、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.
     2、如图,平面直角坐标系中,有三点,以ABO三点为顶点的平行四边形的另一个顶点D的坐标为______.3、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.4、已知长方形ABCD中,AB=4,BC=10,MBC中点,PAD上的动点,则以BMP为顶点组成的等腰三角形的底边长是______________________.5、如图,在矩形ABCD中,对角线ACBD相交于点O,点EF分别是AOAD的中点,若AB=6cm,BC=8cm,则EF=_____cm.三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD的对角线ACBD相交于点OBD12cm ,AC6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O 以2cm /s 的速度向点D运动. (1)若点EF同时运动,设运动时间为t秒,当t 为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积.2、如图,在正方形中,是直线上的一点,连接,过点,交直线于点,连接(1)当点在线段上时,如图①,求证:(2)当点在直线上移动时,位置如图②、图③所示,线段之间又有怎样的数量关系?请直接写出你的猜想,不需证明.3、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.4、如图,四边形ABCD是平行四边形,EF是对角线AC的三等分点,连接BEDF.证明BE=DF5、如图1,在平面直角坐标系中,直线l1ykx+bk≠0)与x轴交于点A,与y轴交于点B(0,6),直线l2x轴交于点C,与直线l1交于Dm,3),OC=2OAtanBAO(1)求直线l2的解析式.(2)在线段DC上是否存在点P,使△DAP的面积为?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图2,连接OD,将△ODB沿直线AB翻折得到△O'DB.若点M为直线AB上一动点,在平面内是否存在点N,使得以BO′、MN为顶点的四边形为菱形,若存在,直接写出N的坐标,若不存在,请说明理由. -参考答案-一、单选题1、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】选项均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.3、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.4、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.5、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项ACD不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.6、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.7、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.8、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
    ∴∠BAC=∠CAB′,
    ABCD
    ∴∠BAC=∠ACD
    ∴∠ACD=∠CAB′,
    AE=CE
    ∴结论正确的是D选项.
    故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.9、B【分析】由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.【详解】解:∵∠ACB=90°,∠B=54°,
    ∴∠A=36°,
    CD是斜边AB上的中线,
    CD=AD
    ∴∠ACD=∠A=36°.
    故选:B.【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.10、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.二、填空题1、2.5.【分析】如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出ACBC的长度,利用勾股定理求解即可.【详解】解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,过点BBCADC∴∠BCD =90°,∵四边形ADEF是矩形,∴∠ADE=∠DEF=90°∴四边形BCDE是矩形,答:则壁虎捕捉蚊子的最短路程是2.5m.故答案为:2.5.
    【点睛】本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.2、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出AD的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点ABO的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBOD的横坐标是3+6=9,纵坐标是4,D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.3、【分析】利用三角形的内角和定理以及折叠的性质,求出,利用四边形内角和为,即可求出∠2.【详解】解:在中,中,由折叠性质可知:四边形的内角和为,且∠1=85°,故答案为:【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.4、5或【分析】分三种情况:①当BP=PM时,点PBM的垂直平分线上,取BM的中点N,过点NNPBMADP,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解.【详解】解:BC=10,MBC中点,BM=5,当△BMP为等腰三角形时,分三种情况:①当BP=PM时,点PAM的垂直平分线上,BM的中点N,过点NNPADADP,如图1所示:则△PBM是等腰三角形∴底边BM的长为5②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,PN=AB=4,MN= RtPBN中,③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得 RtPBN中,综上,以BMP为顶点组成的等腰三角形的底边长是:5 或故答案为:5 或【点睛】本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.5、##【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=ACBO=OD,求出BDOD,根据三角形中位线求出即可.【详解】解:∵四边形ABCD是矩形, ∴∠ABC=90°,BD=ACBO=ODAB=6cmBC=8cm∴由勾股定理得:(cm), DO=5cm, ∵点EF分别是AOAD的中点, EF=OD=2.5cm故答案为:2.5.【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD三、解答题1、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;
    (2)若是菱形,则AC垂直于BD,即有,故AB可求;
    (3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,AOOCEOOFBOOD=6cm∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则∴当AB时,平行四边形是菱形;(3)由(1)(2)可知当t=2sAB=时,四边形AECF是菱形,EO=6−t=4,EF=8,∴菱形AECF的面积=【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.2、(1)见解析;(2)图②中,图③中【分析】(1)在上截取,连接,可先证得,则,进而可证得△AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的之间的数量关系.【详解】解:(1)证明:如图,在上截取,连接∵四边形是正方形,∴△ECF是等腰直角三角形,中,
     (2)图②:,理由如下:如下图,在延长线上截取,连接
     ∵四边形是正方形,  ∴△ECF是等腰直角三角形,  中,图③:如图,在DE上截取DF=BE,连接
     ∵四边形是正方形,∴△ECF是等腰直角三角形,中,  【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.3、这个多边形的边数是6【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n由题意得:(n-2)×180°=2×360°,解得n=6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.4、见详解【分析】由题意易得AB=CDABCDAE=CF,则有∠BAE=∠DCF,进而问题可求证.【详解】证明:∵四边形ABCD是平行四边形,AB=CDABCD∴∠BAE=∠DCFEF是对角线AC的三等分点,AE=CF在△ABE和△CDF中,∴△ABE≌△CDFSAS),BE=DF【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.5、(1);(2)(,2);(3)N点坐标为()、()、(0,0)或(,6).【分析】(1)由y轴截距以及正切值,可求出,则 A点坐标为(,0),因为OC=2OA所以C点坐标为(,0 ),将Dm,3)代入,得D点坐标为( ,3),再将D,3),C,0 )代入,求得(2)设P点坐标为(a),由题意可知△DAP,△DAP的高为A点到直线CD的距离,过 A点做DC平行线交y轴于点E,由可知 ,将A,0)代入,解得 ,故两线间的距离为,△DAP的高为,由三角形面积= 底×高,有2,故有,进而即可求解;(3)如图所示,共有4个点满足条件,证明见解析.【详解】(1)∵B(0,6),tanBAOy=0,得A点坐标为(,0)OC=2OAC点坐标为(,0)Dm,3)代入D点坐标为(,3)D,3),C,0)代入(2)设P点坐标为(a),过A点做DC平行线交y轴于点EAE//DCA,0)代入b=2间的距离为,即△DAP的高为由三角形面积=底×高有2故有化简得解得a=0(舍去)或a=P点坐标为(,2).(3)如图所示,可知BO’=6,在B点上方截取BM1=6,过M1BO’平行线,过O’做BM1平行线,两平行线相交于N1由作图步骤可知▱BON1M1为菱形,由菱形性质可得N1坐标为().如图所示,可知BO’=6,在B点下方截取BM2=6,过M2BO’平行线,过O’做BM2平行线,两平行线相交于N2由作图步骤可知▱BON2M2为菱形,由菱形性质可得N2坐标为().如图所示,可知BO’=6,在B点下方截取BN3=6,过N3BO’平行线,过O’做BN3平行线,两平行线相交于M3由作图步骤可知▱B N3M3O’为菱形,由菱形性质可得N3坐标为(0,0).如图所示,可知BO’=6,令BO’做菱形其中一条对角线,过O’做x轴平行线交直线AB于点M4,过B点做OM4平行线,过O’点做直线AB平行线,两平行线相交于N4由作图步骤可知▱B M4ON4为菱形,由菱形性质可得N4坐标为(,6).综上所述N点坐标为()、()、(0,0)或(,6).【点睛】本题考查了一次函数的图象及其性质,菱形的判定,熟练掌握并应用菱形的性质是解第三问的关键:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.⑶菱形具有平行四边形的一切性质.⑷菱形是轴对称图形,对称轴是两条对角线所在的直线.⑸利用菱形的性质可证线段相等,角相等. 

    相关试卷

    初中数学第十五章 四边形综合与测试当堂达标检测题:

    这是一份初中数学第十五章 四边形综合与测试当堂达标检测题,共25页。试卷主要包含了下列说法中,正确的是,以下分别是回收,平行四边形中,,则的度数是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学第十五章 四边形综合与测试同步训练题:

    这是一份初中数学第十五章 四边形综合与测试同步训练题,共26页。

    2021学年第十五章 四边形综合与测试课后练习题:

    这是一份2021学年第十五章 四边形综合与测试课后练习题,共30页。试卷主要包含了下列说法中,不正确的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map