初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共25页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )
A.梯形的下底是上底的两倍B.梯形最大角是
C.梯形的腰与上底相等D.梯形的底角是
2、如图,在六边形中,若,则( )
A.180°B.240°C.270°D.360°
3、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )
A.①④⇒⑥B.①③⇒⑤C.①②⇒⑥D.②③⇒④
4、下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5、平行四边形中,,则的度数是( )
A.B.C.D.
6、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )
A.1B.1.5C.2D.4
7、下列图中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
8、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cmB.22.5cmC.23.25cmD.以上都不对
9、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )
A.22B.18C.14D.10
10、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.
2、七边形内角和的度数是__________.
3、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _____.
4、如图,已知ABCD,和的平分线相交于,,求的度数_____.
5、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.
(1)当为何值时,四边形为平行四边形?
(2)设四边形的面积为,求与之间的函数关系式.
(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
2、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.
3、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)
4、如图,已知矩形中,点,分别是,上的点,,且.
(1)求证:;
(2)若,求:的值.
5、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.
-参考答案-
一、单选题
1、D
【分析】
如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.
【详解】
解:如图,,
,
,
,
梯形是等腰梯形,
,
则梯形最大角是,选项B正确;
没有指明哪个角是底角,
梯形的底角是或,选项D错误;
如图,连接,
,
是等边三角形,
,
,
点共线,
,
,
,
四边形是平行四边形,
,
,
,
,,
四边形是菱形,
,
,,选项A、C正确;
故选:D.
【点睛】
本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.
2、C
【分析】
根据多边形外角和求解即可.
【详解】
解: ,
,
故选:C
【点睛】
本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.
3、C
【分析】
根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
【详解】
解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
故选:C.
【点睛】
本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
4、D
【分析】
根据轴对称图形与中心对称图形的概念求解即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项符合题意;
D.是轴对称图形,也是中心对称图形,故此选项不合题意.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
5、B
【分析】
根据平行四边形对角相等,即可求出的度数.
【详解】
解:如图所示,
∵四边形是平行四边形,
∴,
∴,
∴.
故:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
6、C
【分析】
取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
【详解】
解:取线段AC的中点G,连接EG,如图所示.
∵AC=BC=8,∠BCA=60°,
∴△ABC为等边三角形,且AD为△ABC的对称轴,
∴CD=CG=AB=4,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG,
在△FCD和△ECG中,
,
∴△FCD≌△ECG(SAS),
∴DF=GE.
当EG∥BC时,EG最小,
∵点G为AC的中点,
∴此时EG=DF=CD=BC=2.
故选:C.
【点睛】
本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
7、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,也不是中心对称图形.故本选项不合题意;
B、是轴对称图形,不是中心对称图形.故本选项不合题意;
C、不是轴对称图形,是中心对称图形.故本选项不合题意;
D、既是轴对称图形又是中心对称图形.故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
9、B
【分析】
首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
【详解】
解:取AC的中点E,连接BE,OE,OB,
∵∠AOC=90°,AC=16,
∴OE=CEAC=8,
∵BC⊥AC,BC=6,
∴BE10,
若点O,E,B不在一条直线上,则OB<OE+BE=18.
若点O,E,B在一条直线上,则OB=OE+BE=18,
∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.
故选:B
【点睛】
此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
10、C
【分析】
根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
【详解】
解:∵点P是∠AOB平分线上的一点,,
∴,
∵PD⊥OA,M是OP的中点,
∴,
∴
∵点C是OB上一个动点
∴当时,PC的值最小,
∵OP平分∠AOB,PD⊥OA,
∴最小值,
故选C.
【点睛】
本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
二、填空题
1、(9,4)、(-3,4)、(3,-4)
【分析】
根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.
【详解】
∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),
∴AD=BO=6,AD∥BO,
∴D的横坐标是3+6=9,纵坐标是4,
即D的坐标是(9,4),
同理可得出D的坐标还有(-3,4)、(3,-4).
故答案为:(9,4)、(-3,4)、(3,-4).
【点睛】
本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.
2、900°900度
【分析】
根据多边形内角和公式计算即可.
【详解】
解:七边形内角和的度数是,
故答案为:900°.
【点睛】
本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:.
3、10
【分析】
根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.
【详解】
∵四边形ABCD是正方形,
∴,,
∴.
根据题意可知:,,
∴,,
∴在和中,,
∴,
∴.
∵在中,,
∴正方形ABCD的面积是10.
故答案为:10.
【点睛】
本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.
4、110°度
【分析】
过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.
【详解】
解:过点E作EH∥AB,如图所示,
∵AB∥CD,
∴AB∥EH∥CD,
∴∠ABE=∠BEH,∠CDE=∠DEH,
∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,
∴∠BEH+∠DEH=220°,
∴∠ABE+∠CDE=220°,
∵∠ABE和∠CDE的平分线相交于F,
∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,
∵∠BFD+∠BED+∠EBF+∠EDF=360°,
∴∠BFD=110°.
故答案为:110°.
【点睛】
本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.
5、-1
【分析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
【详解】
解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
∴m=﹣2021,n=2020,
∴m+n=﹣1.
故答案为:-1.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
三、解答题
1、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
【分析】
(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
【详解】
解:(1)∵在平行四边形中,,,
由运动知,AQ=16−t,BP=2t,
∵四边形ABPQ为平行四边形,
∴AQ=BP,
∴16−t=2t
∴t=,
即:t=s时,四边形ABPQ是平行四边形;
(2)过点A作AE⊥BC于E,如图,
在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由运动知,BP=2t,DQ=t,
∵四边形ABCD是平行四边形,
∴AD=BC=16,
∴AQ=16−t,
∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
(3)由(2)知,AE=4,
∵BC=16,
∴S四边形ABCD=16×4=64,
由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
∴2t+32=×64,
∴t=8;
如图,
当t=8时,点P和点C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;
(4)①当AB=BP时,BP=8,
即2t=8,t=4;
②当AP=BP时,如图,
∵∠B=30°,
过P作PM垂直于AB,垂足为点M,
∴BM=4,,
解得:BP=,
∴2t=,
∴t=
③当AB=AP时,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,当t=4或 或时,△ABP为等腰三角形.
【点睛】
此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
2、
【分析】
由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
【详解】
解:∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°
∵由翻折的性质可知∠F=∠A,BF=AB,
∴BF=DC,∠F=∠C.
在△DCE与△BEF中,
∴△DCE≌△BFE.
在Rt△BDC中,由勾股定理得:BC=.
∵△DCE≌△BFE,
∴BE=DE.
设BE=DE=x,则EC=12−x.
在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
解得:x=.
∴BE=.
【点睛】
本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
3、2598元
【分析】
根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.
【详解】
连接BD,AD相交于点O,如图:
∵四边形ABCD是一个菱形,
∴AC⊥BD,
∵∠ABC=120°,
∴∠A=60°,
∴△ABD为等边三角形,
∵菱形的周长为40m,
∴菱形的边长为10m,
∴BD=10m,BO=5m,
∴在Rt△AOB中,m,
∴AC=2OA=m,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EH=BD =5m,EF=AC=5m,
∴S矩形=5×5=50m2,
则需投资资金50×30=1500×1.732≈2598元
【点睛】
本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.
4、(1)见解析;(2)
【分析】
(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;
(2)由已知条件得到,由,即可得到:的值.
【详解】
(1)∵四边形是矩形,
∴,
∵,
∴,
∴,
∴,
在与中,
,
∴,
∴;
(2)∵,
∴,
∵,
∴,
∴.
【点睛】
本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
5、(1)见解析;(2)正方形ABCD的面积为
【分析】
(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;
(2)证明菱形ABCD是正方形,即可得出答案.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AO=OC,
∵△ACE是等边三角形,
∴EO⊥AC (三线合一),
即BD⊥AC,
∴▱ABCD是菱形;
(2)解:∵△ACE是等边三角形,
∴∠EAC=60°
由(1)知,EO⊥AC,AO=OC
∴∠AEO=∠OEC=30°,△AOE是直角三角形,
∵∠AED=2∠EAD,
∴∠EAD=15°,
∴∠DAO=∠EAO﹣∠EAD=45°,
∵▱ABCD是菱形,
∴∠BAD=2∠DAO=90°,
∴菱形ABCD是正方形,
∴正方形ABCD的面积=AB2=a2.
【点睛】
本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.
相关试卷
这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试测试题,共25页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共23页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。