初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共24页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为( )
A.(,1)B.(1,1)C.(1,)D.(+1,1)
2、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A.B.C.D.
3、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )
A.75°B.60°C.55°D.40°
4、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③B.②③④C.①②④D.①④
5、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )
A.1B.2C.3D.4
6、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).
A.4B.10C.6D.8
7、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7B.6C.4D.8
8、已知中,,,CD是斜边AB上的中线,则的度数是( )
A.B.C.D.
9、下列命题是真命题的是( )
A.五边形的内角和是720°B.三角形的任意两边之和大于第三边
C.内错角相等D.对角线互相垂直的四边形是菱形
10、下列图形中,是中心对称图形的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.
2、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为 _____.
3、已知正方形ABCD的一条对角线长为2,则它的面积是______.
4、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.
5、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.
2、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.
3、在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段.点A固定在格点上.
(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a= ,b= ,= ;
(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , .
4、如图是两张10×10的方格纸,方格纸中的每个小正方形的边长均为1.请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):
(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形.
(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形.
5、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;
(拓展应用)
(2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
-参考答案-
一、单选题
1、B
【分析】
作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
【详解】
:作CD⊥x轴于点D,
则∠CDO=90°,
∵四边形OABC是菱形,OA=,
∴OC=OA=,
又∵∠AOC=45°,
∴∠OCD=90°-∠AOC=90°-45°=45°,
∴∠DOC=∠OCD,
∴CD=OD,
在Rt△OCD中,OC=,CD2+OD2=OC2,
∴2OD2=OC2=2,
∴OD2=1,
∴OD=CD=1(负值舍去),
则点C的坐标为(1,1),
故选:B.
【点睛】
此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
2、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
3、C
【分析】
证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.
【详解】
解:∵点E,F分别是AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠AEF=∠B=55°,
故选:C.
【点睛】
本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.
4、C
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
5、B
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
【详解】
第一个图形是中心对称图形,又是轴对称图形,
第二个图形是中心对称图形,又是轴对称图形,
第三个图形不是中心对称图形,是轴对称图形,
第四个图形不是中心对称图形,是轴对称图形,
综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
故选:B.
【点睛】
点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、B
【分析】
根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
【详解】
解:∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵点P,D分别是AF,AB的中点,
∴PD=BF=6,PD//BC,
∴∠PDA=∠CBA,
同理,QD=AE=8,∠QDB=∠CAB,
∴∠PDA+∠QDB=90°,即∠PDQ=90°,
∴PQ==10,
故选:B.
【点睛】
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
7、A
【分析】
如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
【详解】
解:如图所示,连接AC,OB交于点D,
∵C是直线与y轴的交点,
∴点C的坐标为(0,2),
∵OA=4,
∴A点坐标为(4,0),
∵四边形OABC是矩形,
∴D是AC的中点,
∴D点坐标为(2,1),
当直线经过点D时,可将矩形OABC的面积平分,
由题意得平移后的直线解析式为,
∴,
∴,
故选A.
【点睛】
本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
8、B
【分析】
由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.
【详解】
解:∵∠ACB=90°,∠B=54°,
∴∠A=36°,
∵CD是斜边AB上的中线,
∴CD=AD,
∴∠ACD=∠A=36°.
故选:B.
【点睛】
本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.
9、B
【分析】
利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
【详解】
解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
10、B
【分析】
根据中心对称图形的定义求解即可.
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
【点睛】
此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
二、填空题
1、5
【分析】
直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.
【详解】
解:在直角三角形中,两直角边长分别为6和8,
则斜边长==10,
∴斜边中线长为×10=5,
故答案为 5.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.
2、##
【分析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:,,,
,
∴∠ABC=90°,
∵点D为AC的中点,
∴BD为AC边上的中线,
∴BD=AC,
故答案为:
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
3、6
【分析】
正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.
【详解】
解: 正方形ABCD的一条对角线长为2,
故答案为:
【点睛】
本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.
4、10或14或10
【分析】
利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.
【详解】
解: 四边形ABCD是平行四边形,
,,,
,,
BF平分∠ABC, CE平分∠BCD,
,,
,,
由等角对等边可知:,,
情况1:当与相交时,如下图所示:
,
,
,
情况2:当与不相交时,如下图所示:
,
,
故答案为:10或14.
【点睛】
本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.
5、144°度
【分析】
先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.
【详解】
解:∵四边形的四个外角的度数之比为1:2:3:4,
∴四个外角的度数分别为:360°×;
360°×;
360°×;
360°×;
∴它最大的内角度数为:.
故答案为:144°.
【点睛】
本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.
三、解答题
1、(1)见解析;(2)正方形ABCD的面积为
【分析】
(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;
(2)证明菱形ABCD是正方形,即可得出答案.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AO=OC,
∵△ACE是等边三角形,
∴EO⊥AC (三线合一),
即BD⊥AC,
∴▱ABCD是菱形;
(2)解:∵△ACE是等边三角形,
∴∠EAC=60°
由(1)知,EO⊥AC,AO=OC
∴∠AEO=∠OEC=30°,△AOE是直角三角形,
∵∠AED=2∠EAD,
∴∠EAD=15°,
∴∠DAO=∠EAO﹣∠EAD=45°,
∵▱ABCD是菱形,
∴∠BAD=2∠DAO=90°,
∴菱形ABCD是正方形,
∴正方形ABCD的面积=AB2=a2.
【点睛】
本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.
2、4
【分析】
分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。
【详解】
解:如图,分别过作垂足为点
四边形ABEF为菱形,
,,
,
在中, ,
根据题意,,根据平行线间的距离处处相等,
.
答:的面积为4.
【点睛】
本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.
3、(1),2,;(2)4或5.
【分析】
(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;
(2)根据要求周长边长为的菱形即可.
【详解】
解:(1)由题意得:a=,b=2,
∴;
故答案为:,2,;
(2)如图1,2中,菱形ABCD即为所求.
菱形ABCD的面积为=×4×2=4或菱形ABCD的面积=×=5,
故答案为:4或5.
【点睛】
本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题.
4、(1)画图见解析;(2)画图见解析
【分析】
(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;
(2)利用矩形的性质结合其周长得出答案,答案不唯一.
【详解】
解:(1)如图1所示:
(2)如图2所示:
答案不唯一.
【点睛】
本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质.
5、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
【分析】
(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
(2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
【详解】
(1)证明:∵∠ACD是△ABC的外角
∴∠ACD=∠A+∠ABC
∵CE平分∠ACD
∴
又∵∠ECD=∠E+∠EBC
∴
∵BE平分∠ABC
∴
∴
∴;
(2)①∵∠ACD=130°,∠BCD=50°
∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
∵∠CBA=40°
∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
∵AD平分∠BAC
∴
∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
②∠CAD+41°=∠CBD
设∠CBD=α
∵∠ABD+∠CBD=180°
∴∠ABC=180°﹣2α
∵∠ACB=82°
∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
∵AD平分∠BAC
∴∠CAD=∠CAB=α﹣41°
∴∠CAD+41°=∠CBD.
【点睛】
本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试习题,共23页。试卷主要包含了下列∠A,下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共24页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共29页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。