![2022年京改版八年级数学下册第十五章四边形达标测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12705728/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版八年级数学下册第十五章四边形达标测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12705728/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版八年级数学下册第十五章四边形达标测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12705728/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共36页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cm B.22.5cm C.23.25cm D.以上都不对
2、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )
A.A,B,C都不在 B.只有B
C.只有A,C D.A,B,C
3、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )
A.22 B.18 C.14 D.10
4、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( ).
A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,6
5、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为( )
A.6 B.6.5 C.10 D.13
6、下列图形中,是中心对称图形的是( )
A. B.
C. D.
7、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
8、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )
A. B. C. D.
9、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )
A.20º B.25º C.30º D.35º
10、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.
2、在平面直角坐标系中,与点关于原点对称的点的坐标是________.
3、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF.若AF=5,BF=3,则AC的长为 _____.
4、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.
(1)以点E,O,F,D为顶点的图形的面积为________________;
(2)线段EF的最小值是_______________.
5、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,四边形ABCD是平行四边形,,且分别交对角线于点E、F,连接ED、BF.
(1)求证:四边形BEDF是平行四边形;
(2)若AE=EF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.
2、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 .
3、△ABC和△GEF都是等边三角形.
问题背景:如图1,点E与点C重合且B、C、G三点共线.此时△BFC可以看作是△AGC经过平移、轴对称或旋转得到.请直接写出得到△BFC的过程.
迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为△ABC中线CD上一点,延长GF交BC于点H,求证:.
联系拓展:如图3,AB=12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列).当最小时,则△MDG的面积为_______.
4、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.
(1)写出C点坐标 ;
(2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;
(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.
5、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.
(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;
(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.
-参考答案-
一、单选题
1、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
2、D
【分析】
根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.
【详解】
解:如图所示:连接BD,
∵,,,
∴,
∴为直角三角形,
∵D为AC中点,
∴,
∵覆盖半径为300 ,
∴A、B、C三个点都被覆盖,
故选:D.
【点睛】
题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.
3、B
【分析】
首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
【详解】
解:取AC的中点E,连接BE,OE,OB,
∵∠AOC=90°,AC=16,
∴OE=CEAC=8,
∵BC⊥AC,BC=6,
∴BE10,
若点O,E,B不在一条直线上,则OB<OE+BE=18.
若点O,E,B在一条直线上,则OB=OE+BE=18,
∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.
故选:B
【点睛】
此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
4、C
【分析】
将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.
【详解】
解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;
B、因为1+1+14,所以能构成四边形,故该项符合题意;
D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;
故选:C.
【点睛】
此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.
5、B
【分析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:∵直角三角形两直角边长为5和12,
∴斜边=,
∴此直角三角形斜边上的中线的长==6.5.
故选:B.
【点睛】
本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.
6、A
【分析】
把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
【详解】
解:选项A中的图形是中心对称图形,故A符合题意;
选项B中的图形不是中心对称图形,故B不符合题意;
选项C中的图形不是中心对称图形,故C不符合题意;
选项D中的图形不是中心对称图形,故D不符合题意;
故选A
【点睛】
本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
7、B
【详解】
解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
8、C
【分析】
由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
解: 矩形ABCD,
设BE=x,
∵AE为折痕,
∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,
∴Rt△EFC中,,EC=2-x,
∴,
解得:,
则点E到点B的距离为:.
故选:C.
【点睛】
本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
9、C
【分析】
依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.
【详解】
∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.
【点睛】
考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.
10、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
二、填空题
1、12
【分析】
据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.
【详解】
解:∵如图所示,D、E、F分别是AB、BC、AC的中点,
∴ED、FE、DF为△ABC中位线,
∴DFBC,FEAB,DEAC,
∴△DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)24=12.
故答案为:12.
【点睛】
本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.
2、(-3,-1)
【分析】
由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.
【详解】
解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).
故答案为:(-3,-1).
【点睛】
本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
3、
【分析】
根据矩形的性质得到∠B=90°,根据勾股定理得到,根据折叠的性质得到CF=AF=5,根据勾股定理即可得到结论.
【详解】
解:∵四边形ABCD是矩形,
∴∠B=90°,
∵AF=5,BF=3,
∴,
∵将矩形ABCD折叠,使点C与点A重合,折痕为EF.
∴CF=AF=5,
∴BC=BF+CF=8,
∴,
故答案为:.
【点睛】
本题主要考查了矩形与折叠问题,勾股定理,解题的关键在于能够熟练掌握折叠的性质.
4、1
【分析】
(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;
(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.
【详解】
解:(1)连接OA、OD,
∵四边形ABCD是正方形,
∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,
∴∠AOE+∠DOE=90°,
∵OE⊥OF,
∴∠DOF+∠DOE=90°,
∴∠AOE=∠DOF,
在△OAE和△ODF中,
,
∴△OAE≌△ODF(ASA),
∴S△OAE=S△ODF,
∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,
∵AD=2,
∴S四边形EOFD= ×4=1,
故答案为:1;
(2)∵△OAE≌△ODF,
∴OE=OF,
∴△EOF为等腰直角三角形,则EF=OE,
当OE⊥AD时OE最小,即EF最小,
∵OA=OD,∠AOD=90°,
∴OE=AD=1,
∴EF的最小值,
故答案为:.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.
5、10
【分析】
根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.
【详解】
∵四边形ABCD是正方形,
∴,,
∴.
根据题意可知:,,
∴,,
∴在和中,,
∴,
∴.
∵在中,,
∴正方形ABCD的面积是10.
故答案为:10.
【点睛】
本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.
三、解答题
1、(1)证明见解析;(2)
【分析】
(1)先证明再证明可得从而有 于是可得结论;
(2)先证明再证明,从而可得结论.
【详解】
证明:(1) 四边形ABCD是平行四边形,
,
∴∠BEF=∠DFE,
四边形BEDF是平行四边形.
(2)由(1)得:
四边形BEDF是平行四边形, 四边形ABCD是平行四边形,
,
∴S△ADF=S△DEC=S△ABF=S△BEC=13S▱ABCD.
【点睛】
本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.
2、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
【分析】
(1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
(2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
(3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
【详解】
解:(1)∵四边形ABCD为矩形,
∴DC=AB=9,AD=BC=12.
∵DG=5,
∴GC=4.
∵PB=x,PC=12-x,
∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
当y=34时,-2.5x+54=34,解得x=8;
(2)存在.
∵PB=x,PC=12-x,AD=12,DG=5,
∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
∵当AG2=AP2+PG2时,AP⊥PG,
∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
解得:x=6;
(3)如图所示:
∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
∴M1为AB的中点,点N1位GB的中点.
∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
∴M2为AC的中点,点N2位CG的中点.
∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
∴M1M2∥N1N2,N1N2=M1M2.
∴四边形M1M2N2N1为平行四边形.
∴MN扫过的区域为平行四边形.
S=BC•(AB-CG)=6×2.5=15,
故答案为:平行四边形;15.
【点睛】
本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
3、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3).
【分析】
(1)只需要利用SAS证明△BCF≌△ACG即可得到答案;
(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FM⊥BC于M,求出,即可推出,则,即:;
法二:过F作,.先证明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;
(3)如图3-1所示,连接,GM,AG,先证明△ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动.过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQ⊥AB于Q,连接DG,求出DM和QG的长即可求解.
【详解】
(1)∵△ABC和△GEF都是等边三角形,
∴BC=AC,CF=CG,∠ACB=∠FCG=60°,
∴∠ACB+∠ACF=∠FCG+∠ACF,
∴∠FCB=∠GCA,
∴△BCF≌△ACG(SAS),
∴△BFC可以看作是△AGC绕点C逆时针旋转60度所得;
(2)法一:
证明:以为边作,与的延长线交于点K,如图,
∵和均为等边三角形,
∴,∠GFE=60°,
∴,
∴∠EFH+∠ACB=180°,
∴,
∵,
∴.
∵是等边的中线,
∴,
∴,
∴
∴.
在与中,
∴,
∴,
∴,
过点F作FM⊥BC于M,
∴KM=CM,
∵∠K=30°,
∴
∴,
∴,
∴,即:;
法二
证明:过F作,.
∴是等边的中线,
∴,,
∴△FCN≌△FCM(AAS),FC=2FN,
∴CM=CN,,
同法一,.
在与中,
∴
∴,
∴;
(3)如图3-1所示,连接,GM,AG,
∵D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,CD⊥AB,
∴DE∥BC,∠CDA=90°,
∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,
∴△ADE是等边三角形,∠FDE=30°,
∴DE=AE,
∵△GEF是等边三角形,
∴EF=EG,∠GEF=60°,
∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,
∴
∴,即点G在的角平分线所在直线上运动.
过G作,则,
∴最小即是最小,
∴当M、G、P三点共线时,最小
如图3-2所示,过点G作GQ⊥AB于Q,连接DG,
∴QG=PG,
∵∠MAP=60°,∠MPA=90°,
∴∠AMP=30°,
∴AM=2AP,
∵D是AB的中点,AB=12,
∴AD=BD=6,
∵M是BD靠近B点的三等分点,
∴MD=4,
∴AM=10,
∴AP=5,
又∵∠PAG=30°,
∴AG=2GP,
∵,
∴
∴
∴.
【点睛】
本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解.
4、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.
【分析】
(1)直接利用直线,令y=0,解方程即可;
(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;
(3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.
【详解】
解:(1)∵直线交x轴正半轴于点C.
∴当y=0时,,
解得x=6
∴点C(6,0)
故答案为(6,0);
(2)连接OM并双向延长,
∵S△AMB=S△AOB ,
∴点O到AB与点M到AB的距离相等,
∴直线OM平行于直线AB,
∵AB解析式为y=2x+8,
故设直线OM解析式为:,
将直线OM的解析式与直线BC的解析式联立得方程组得:
,
解得:
故点;
(3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴令y=0,2x+8=0,
解得x=-4,
∴A(-4,0),
令x=0,则y=8
∴B(0,8),
∵点F为AB中点,
点F横坐标为,纵坐标为
∴F(-2,4),
设G(0,n),
①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN=n-4,
∴Q(n-4,n-2),
∵点Q在直线上,
∴,
∴,
∴.
②当n<4时,如图2-2中,
点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN= 4-n,
∴Q(4- n, n+2),
∵点Q在直线上,
∴,
∴n=-2,
∴.
综上所述,满足条件的点G坐标为或.
【点睛】
本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
5、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31
【分析】
(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;
(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;
(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.
【详解】
解:(1)如图1,连接AC,延长CE交AD于点H,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠BAC=60°;
∵△APE是等边三角形,
∴AP=AE,∠PAE=60°,
∴∠BAP=∠CAE=60°﹣∠PAC,
∴△BAP≌△CAE(SAS),
∴BP=CE;
∵四边形ABCD是菱形,
∴∠ABP=∠ABC=30°,
∴∠ABP=∠ACE=30°,
∵∠ACB=60°,
∴∠BCE=60°+30°=90°,
∴CE⊥BC;
故答案为:BP=CE,CE⊥BC;
(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:
如图2中,连接AC,设CE与AD交于H,
∵菱形ABCD,∠ABC=60°,
∴△ABC和△ACD都是等边三角形,
∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,
∵△APE是等边三角形,
∴AP=AE,∠PAE=60°,
∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
∴∠BAP=∠CAE,
∴△ABP≌△ACE(SAS),
∴BP=CE,∠ACE=∠ABD=30°,
∴∠DCE=30°,
∵∠ADC=60°,
∴∠DCE+∠ADC=90°,
∴∠CHD=90°,
∴CE⊥AD;
∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;
(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,
∵四边形ABCD是菱形,
∴AC⊥BD BD平分∠ABC,
∵∠ABC=60°,AB=2,
∴∠ABO=30°,
∴AO=AB=,OB=AO=3,
∴BD=6,
由(2)知CE⊥AD,
∵AD∥BC,
∴CE⊥BC,
∵BE=2,BC=AB=2,
∴CE==8,
由(2)知BP=CE=8,
∴DP=2,
∴OP=5,
∴AP===2,
∵△APE是等边三角形,
∴S△AEP=×(2)2=7,
如图4中,当点P在DB的延长线上时,同法可得AP===2,
∴S△AEP=×(2)2=31,
【点睛】
此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共27页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共26页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。