![2022年强化训练京改版八年级数学下册第十五章四边形同步训练试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12705741/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练京改版八年级数学下册第十五章四边形同步训练试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12705741/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练京改版八年级数学下册第十五章四边形同步训练试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12705741/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十五章 四边形综合与测试课后复习题
展开
这是一份2021学年第十五章 四边形综合与测试课后复习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
A. B. C. D.2、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )A.A,B,C都不在 B.只有BC.只有A,C D.A,B,C3、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )A. B. C. D.4、下列图形中,是中心对称图形的是( )A. B.C. D.5、四边形的内角和与外角和的数量关系,正确的是( )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等6、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )A.cm B.2cm C.1cm D.2cm7、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.8、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )A. B. C. D.9、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾10、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.2、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______. 3、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.4、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.5、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.三、解答题(5小题,每小题10分,共计50分)1、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.2、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形.画出所有情况(给出的图形不一定全用,不够可添加).3、如图,四边形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分别为E、F.求证:BE=BF.4、如图,已知矩形中,点,分别是,上的点,,且.(1)求证:;(2)若,求:的值.5、在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,过点D作DE⊥AB,交BC于点E,连接AE,取AE的中点P,连接DP,CP.(1)观察猜想: 如图(1),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 .(2)类比探究: 将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决: 若BC=3BD=3, 将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB时,请直接写出线段CP的长. -参考答案-一、单选题1、C【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.【详解】解:∵点P是∠AOB平分线上的一点,,∴,∵PD⊥OA,M是OP的中点,∴,∴∵点C是OB上一个动点∴当时,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故选C.【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.2、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD,∵,,,∴,∴为直角三角形,∵D为AC中点,∴,∵覆盖半径为300 ,∴A、B、C三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.3、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+,∴AB+BC=3+-2=1+.等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2AB•BC=4+2,∵AB2+BC2=AC2=4,∴2AB•BC=2,AB•BC=,即三角形的面积为×AB•BC=.故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.4、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.5、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.6、B【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.7、D【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.是轴对称图形,不是中心对称图形,故本选项符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.【详解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中点,∴CE=AD=,故选: B.【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.9、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.二、填空题1、25°【分析】利用翻折变换的性质即可解决.【详解】解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案为:25°.【点睛】本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.2、8【分析】证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.【详解】解:∵四边形ABCD是平行四边形,∴,AB=CD, ∵,∴四边形ABDE是平行四边形,∴DE=CD=,, 过点E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,, ∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案为:8.【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.3、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.【详解】解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,∴m=﹣2021,n=2020,∴m+n=﹣1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.4、【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设,四边形为正方形,,,点为的中点,,,,,四边形为正方形,,,故答案为:.【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.5、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为 5.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.三、解答题1、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,,,,在中, ,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.2、见解析【分析】根据中心对称图形的概念求解即可.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:如图所示,一共有三种情况:【点睛】此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、见解析【分析】根据菱形的性质,可得AD=DC,AB=BC,∠A=∠C.从而得到△AED≌△CFD.从而得到AE=CF.即可求证.【详解】证明:∵四边形ABCD是菱形, ∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.4、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到:的值.【详解】(1)∵四边形是矩形,∴,∵,∴,∴,∴,在与中,,∴,∴;(2)∵,∴,∵,∴,∴.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.5、(1)PD=PC,PD⊥PC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PT⊥AB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQ⊥BC于Q,利用等腰直角三角形的性质求得,即可求解.【详解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵点P为AE的中点,∴,∴,,∴,∴故答案为:,.(2)结论成立.理由如下:过点P作PT⊥AB交BC的延长线于T,交AC于点O.则∴,∴,,由勾股定理可得:∴∴∴∵点P为AE的中点,∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如图3﹣1中,当点E在BC的上方时,过点P作PQ⊥BC于Q.则,∴∵∴由(2)可得,,,∴为等腰直角三角形∴∴由勾股定理得,如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.综上所述,PC的长为4或2.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共30页。试卷主要包含了下列图案中,是中心对称图形的是,下列图形中不是中心对称图形的是,下列∠A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共33页。
这是一份数学八年级下册第十五章 四边形综合与测试同步练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)