初中北京课改版第十五章 四边形综合与测试同步达标检测题
展开
这是一份初中北京课改版第十五章 四边形综合与测试同步达标检测题,共24页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是( )A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形2、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A.5 B.4 C.3 D.23、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为( )A. B. C.4.5 D.4.34、下列图形中,可以看作是中心对称图形的是( )A. B.C. D.5、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )A.20º B.25º C.30º D.35º6、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )A.16 B.24 C.32 D.407、平行四边形中,,则的度数是( )A. B. C. D.8、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )A.5 B.6 C.8 D.109、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )A.22 B.18 C.14 D.1010、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____2、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.3、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.4、若正边形的每个内角都等于120°,则这个正边形的边数为________.5、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.三、解答题(5小题,每小题10分,共计50分)1、在四边形ABCD中,∠A=100°,∠D=140°.(1)如图①,若∠B=∠C,则∠B= 度;(2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.2、已知:在中,点、点、点分别是、、的中点,连接、.(1)如图1,若,求证:四边形为菱形;(2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.
3、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.4、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.(1)若,求线段AC的长;(2)求证:.5、如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF. -参考答案-一、单选题1、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.2、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.3、A【分析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.【详解】解:∵四边形ABCD为正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵点G为DE的中点,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.4、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.5、C【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.6、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE=CE,AD=BD,DE为△ABC的中位线,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四边形DMBE是平行四边形,∴MD=BE,∵AC=18,BC=14,∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.故选:C.【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.7、B【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,∴,∴,∴.故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.8、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.9、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN, ∴EF=DN, ∴DN最大时,EF最大, ∴N与B重合时DN=DB最大,在Rt△ADH中, ∵∠A=60° ∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2, ∴DB=, ∴EFmax=DB=, ∴EF的最大值为.故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.二、填空题1、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题.【详解】解:由题意得:(n-2)×180°=360°×2,解得:n=6;故答案为6.【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.2、【分析】设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.【详解】解:设这个正多边形有条边,则 解得: 所以从一个正八边形的一个顶点出发可以引条对角线,故答案为:【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为 从边形的一个顶点出发可以引条对角线”是解本题的关键.3、6【分析】根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n﹣2)•180=360×2,解得:n=6.故这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.4、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.【详解】解:设所求正边形边数为,则,解得,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.5、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,、是的邻角,是的对角,,, 故答案为: ,,.【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.三、解答题1、(1)60;(2)40°.【分析】(1)根据四边形内角和为360°解决问题;(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;【详解】(1)∵∠A=100°,∠D=140°,∴∠B=∠C==60°,故答案为60;(2)∵CE//AD,∠DCE+∠D=180°,∴∠DCE=40°,∵CE平分∠BCD,∴∠BCD=80°,∴∠B=360°﹣(100°+140°+80°)=40°.【点睛】本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.2、(1)证明见详解;(2)与面积相等的平行四边形有、、、.【分析】(1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.【详解】解:(1)∵D、E、F分别是AB、AC、BC的中点,∴,,,, ∴四边形DECF为平行四边形,∵,,∴四边形DECF为菱形;(2)∵D、E、F分别是AB、AC、BC的中点,∴,,,,, ,且,,,∴四边形DEFB、DECF、ADFE是平行四边形,∴,∵,,∴四边形EGCF是平行四边形,∴,∴,∴∴与面积相等的平行四边形有、、、.【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.3、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】解:(1)如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∴AC⊥BD BD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等边三角形,∴S△AEP=×(2)2=7,如图4中,当点P在DB的延长线上时,同法可得AP===2,∴S△AEP=×(2)2=31,【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.4、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1),;(2)连接DE,,,,,,.【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.5、见解析.【分析】先证明 再证明EF是△CDB的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共28页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
这是一份数学八年级下册第十五章 四边形综合与测试课时练习,共28页。试卷主要包含了下列命题是真命题的是,下列图案中,是中心对称图形的是,下列说法中,正确的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共23页。