年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析京改版八年级数学下册第十五章四边形月考试题(无超纲)

    2022年精品解析京改版八年级数学下册第十五章四边形月考试题(无超纲)第1页
    2022年精品解析京改版八年级数学下册第十五章四边形月考试题(无超纲)第2页
    2022年精品解析京改版八年级数学下册第十五章四边形月考试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    八年级下册第十五章 四边形综合与测试习题

    展开

    这是一份八年级下册第十五章 四边形综合与测试习题,共30页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形月考
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )

    A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
    2、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
    A.46.5cm B.22.5cm C.23.25cm D.以上都不对
    3、平行四边形中,,则的度数是( )
    A. B. C. D.
    4、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )

    A.180° B.360°
    C.540° D.不能确定
    5、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是(  )
    A.菱形 B.矩形 C.正方形 D.三角形
    6、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )

    A. B. C. D.
    7、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )
    A.7 B.8 C.9 D.10
    8、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )

    A.2.5 B.2 C. D.
    9、如图,在六边形中,若,则( )

    A.180° B.240° C.270° D.360°
    10、下图是文易同学答的试卷,文易同学应得( )

    A.40分 B.60分 C.80分 D.100分
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形ABCD中,AD= ,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ )

    2、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.

    3、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为 _____.

    4、点D、E分别是△ABC边AB、AC的中点,已知BC=12,则DE=_____
    5、菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD的面积为________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.

    (1)求证:四边形是平行四边形;
    (2)当是多少度时,四边形为菱形?试说明理由.
    2、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
    (1)求证:四边形ABEC是平行四边形;
    (2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.

    3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
    (1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
    (2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).

    4、如图,在矩形中,为对角线.
    (1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)
    (2)在(1)所作的图形中,若,求的度数.

    5、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.

    (1)写出C点坐标 ;
    (2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;
    (3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.

    -参考答案-
    一、单选题
    1、B
    【分析】
    由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
    B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    C、是轴对称图形,不是中心对称图形,故此选项不合题意;
    D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、C
    【分析】
    如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
    【详解】
    解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
    ∴,,,
    ∴△DEF的周长,
    同理可得:△GHI的周长,
    ∴第三次作中位线得到的三角形周长为,
    ∴第四次作中位线得到的三角形周长为
    ∴第三次作中位线得到的三角形周长为
    ∴这五个新三角形的周长之和为,
    故选C.

    【点睛】
    本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
    3、B
    【分析】
    根据平行四边形对角相等,即可求出的度数.
    【详解】
    解:如图所示,

    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴.
    故:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
    4、B
    【分析】
    设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
    【详解】
    解:设BE与DF交于点M,BE与AC交于点N,

    ∵ ,
    ∴ ,
    ∵,
    ∴ .
    故选:B
    【点睛】
    本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
    5、B
    【分析】
    先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
    【详解】
    解:如图,∵、、、分别是、、、的中点,
    ∴,,,
    ∴四边形是平行四边形,
    ∵,
    ∴,
    ∴平行四边形是矩形,
    又与不一定相等,
    与不一定相等,
    矩形不一定是正方形,
    故选:B.

    【点睛】
    本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
    6、C
    【分析】
    由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
    【详解】
    解: 矩形ABCD,

    设BE=x,
    ∵AE为折痕,
    ∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
    Rt△ABC中,
    ∴Rt△EFC中,,EC=2-x,
    ∴,
    解得:,
    则点E到点B的距离为:.
    故选:C.
    【点睛】
    本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
    7、D
    【分析】
    根据多边形外角和定理求出正多边形的边数.
    【详解】
    ∵正多边形的每一个外角都等于36°,
    ∴正多边形的边数==10.
    故选:D.
    【点睛】
    本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    8、D
    【分析】
    利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
    【详解】
    解:四边形OABC是矩形,

    在中,由勾股定理可知:,

    弧长为,故在数轴上表示的数为,
    故选:.
    【点睛】
    本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
    9、C
    【分析】
    根据多边形外角和求解即可.
    【详解】
    解: ,

    故选:C
    【点睛】
    本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.
    10、B
    【分析】
    分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
    【详解】
    解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
    (2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
    (3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
    (4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
    (5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
    ∴文易同学答对3道题,得60分,
    故选:B.
    【点睛】
    本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
    二、填空题
    1、2
    【分析】
    当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算.
    【详解】
    解:当AP=AB时,
    ∵四边形ABCD为正方形,
    ∴AB=AD,
    ∴AP=AD.
    ∵ 将△ADE沿DE对折, 得到△PDE,
    ∴AD=DP,
    ∴AP=AD=DP,
    ∴△APD为等边三角形,
    ∴∠ADP=60°,
    ∴∠ADE=30°,
    ∴,
    ∴设,则,
    ∴在中,,即,
    ∴解得:;
    当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,

    ∵AD⊥AB,
    ∴四边形AFPG为矩形,
    ∴PG=AF.
    ∵AP=PB,PF⊥AB,
    ∴AF=AB=.
    ∵AB=AD=DP,
    ∴PG=AF=PD=,
    如图,作DP的中点M,连接GM,



    又∵

    ∴是等边三角形


    ∴∠GDP=30°.
    ∵∠DAE=∠DPE=90°,∠ADP=30°,
    ∴∠AEP=150°,
    ∴∠PEF=30°.
    设PF=x,则PE=AE=2x,EF=x,
    ∴AE+EF=(2+)x= ,
    ∴x=2-3,
    ∴AE=4-6.
    故答案为:2或4-6.
    【点睛】
    此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.
    2、10
    【分析】
    过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
    【详解】
    解:过E作EF⊥AD于F,
    ∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
    ∴△ANM≌△ENM,
    ∴AM=EM,
    ∵矩形ABCD,
    ∴∠B=∠A=∠D=90°,
    ∵FE⊥AD,
    ∴∠AFE=∠B=∠A=90°,
    ∴四边形ABEF为矩形,
    ∴AF=BE=4,FE=AB=8,
    设AM=EM=m,FM=m-4

    在Rt△FEM中,根据勾股定理,即,
    解得m=10,
    ∴MD=AD-AM=16-10=6,
    在Rt△MDC中,
    ∴MC=.
    故答案为10.
    【点睛】
    本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
    3、
    【分析】
    延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.
    【详解】
    解:延长CF与AB交于点M,

    ∵FG⊥CD,AB∥CD,
    ∴CM⊥AB,
    ∵∠B=45°,BC=AD=8,
    ∴CM=4,
    由折叠知GF=AD=8,
    ∵CG=4,
    ∴MF=CM-CF=CM-(GF-CG)=4-4,
    ∵∠EFC=∠A=180°-∠B=135°,
    ∴∠MFE=45°,
    ∴EF=MF=(4-4)=8-4.
    故答案为:8-4.
    【点睛】
    本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.
    4、6
    【分析】
    根据三角形的中位线等于第三边的一半进行计算即可.
    【详解】
    解:∵D、E分别是△ABC边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∵BC=12,
    ∴DE=BC=6,
    故答案为6.

    【点睛】
    本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.
    5、4
    【分析】
    根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.
    【详解】
    解:如图

    四边形是菱形

    菱形ABCD的周长为,

    AO:BO=1:2,




    故答案为:4
    【点睛】
    本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.
    三、解答题
    1、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析
    【分析】
    (1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;
    (2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.
    【详解】
    证明:(1)∵,
    ∴.
    又∵,
    ∴.
    ∴.
    同理可得:.
    ∴,
    又∵,
    ∴四边形BEFG是平行四边形;
    (2)当时,四边形EFGB为菱形.
    理由如下:
    ∵四边形BEFG是菱形,
    ∴,
    由(1)得:,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴.
    【点睛】
    题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.
    2、(1)证明见解析;(2)证明见解析;
    【分析】
    (1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,,利用“一组对边平行且相等的四边形是平行四边形”判断即可;
    (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴,AB=CD,
    ∵CE=DC,
    ∴AB=EC,,
    ∴四边形ABEC是平行四边形;
    (2)∵由(1)知,四边形ABEC是平行四边形,
    ∴FA=FE,FB=FC.
    ∵四边形ABCD是平行四边形,
    ∴∠ABC=∠D.
    又∵∠AFC=2∠ADC,
    ∴∠AFC=2∠ABC.
    ∵∠AFC=∠ABC+∠BAF,
    ∴∠ABC=∠BAF,
    ∴FA=FB,
    ∴FA=FE=FB=FC,
    ∴AE=BC,
    ∴四边形ABEC是矩形.
    【点睛】
    本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.
    3、(1)见解析;(2)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出符合题意的答案;
    (2)直接利用中心对称图形的性质得出符合题意的答案.
    【详解】
    解:(1)如图所示:①②③都是轴对称图形;
    (2)如图所示:④⑤都是中心对称图形.

    【点睛】
    此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.
    4、(1)图形见解析;(2)
    【分析】
    (1)利用尺规根据题意即可完成作图;
    (2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.
    【详解】
    (1)如图,点E和点F即为所求;


    (2)∵,∠ABD=68°,
    ∴∠AEB=∠AEB=68°
    ∴∠EAB=180°-68°-68°=44°,
    ∴∠EAD=90°-44°=46°,
    ∵AF平分∠DAE,
    ∴∠FAE=∠DAE=23°,




    【点睛】
    题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.
    5、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.
    【分析】
    (1)直接利用直线,令y=0,解方程即可;
    (2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;
    (3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.
    【详解】
    解:(1)∵直线交x轴正半轴于点C.
    ∴当y=0时,,
    解得x=6
    ∴点C(6,0)
    故答案为(6,0);
    (2)连接OM并双向延长,

    ∵S△AMB=S△AOB ,
    ∴点O到AB与点M到AB的距离相等,
    ∴直线OM平行于直线AB,
    ∵AB解析式为y=2x+8,
    故设直线OM解析式为:,
    将直线OM的解析式与直线BC的解析式联立得方程组得:

    解得:
    故点;
    (3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
    ∴令y=0,2x+8=0,
    解得x=-4,
    ∴A(-4,0),
    令x=0,则y=8
    ∴B(0,8),
    ∵点F为AB中点,
    点F横坐标为,纵坐标为
    ∴F(-2,4),
    设G(0,n),
    ①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.

    ∵四边形FGQP是正方形,
    ∴FG=QG,∠FGQ=90°,
    ∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
    ∵FM⊥MN,QN⊥MN,
    ∴∠M=∠N=90°,
    ∴∠MFG+∠MGF=90°,
    ∴∠MFG=∠NGQ,
    在△FMG和△GNQ中,

    ∴△FMG≌△GNQ,
    ∴MG=NQ=2,FM=GN=n-4,
    ∴Q(n-4,n-2),
    ∵点Q在直线上,
    ∴,
    ∴,
    ∴.
    ②当n<4时,如图2-2中,
    点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
    ∵四边形FGQP是正方形,
    ∴FG=QG,∠FGQ=90°,
    ∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
    ∵FM⊥MN,QN⊥MN,
    ∴∠M=∠N=90°,
    ∴∠MFG+∠MGF=90°,
    ∴∠MFG=∠NGQ,
    在△FMG和△GNQ中,

    ∴△FMG≌△GNQ,
    ∴MG=NQ=2,FM=GN= 4-n,
    ∴Q(4- n, n+2),
    ∵点Q在直线上,
    ∴,

    ∴n=-2,
    ∴.
    综上所述,满足条件的点G坐标为或.
    【点睛】
    本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

    相关试卷

    2021学年第十五章 四边形综合与测试课后测评:

    这是一份2021学年第十五章 四边形综合与测试课后测评,共26页。

    初中数学第十五章 四边形综合与测试巩固练习:

    这是一份初中数学第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试课后练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共25页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map