八年级下册第十五章 四边形综合与测试习题
展开
这是一份八年级下册第十五章 四边形综合与测试习题,共30页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )
A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
2、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
A.46.5cm B.22.5cm C.23.25cm D.以上都不对
3、平行四边形中,,则的度数是( )
A. B. C. D.
4、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )
A.180° B.360°
C.540° D.不能确定
5、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )
A.菱形 B.矩形 C.正方形 D.三角形
6、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )
A. B. C. D.
7、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )
A.7 B.8 C.9 D.10
8、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
9、如图,在六边形中,若,则( )
A.180° B.240° C.270° D.360°
10、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,正方形ABCD中,AD= ,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ )
2、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.
3、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为 _____.
4、点D、E分别是△ABC边AB、AC的中点,已知BC=12,则DE=_____
5、菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD的面积为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.
(1)求证:四边形是平行四边形;
(2)当是多少度时,四边形为菱形?试说明理由.
2、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:四边形ABEC是平行四边形;
(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.
3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).
4、如图,在矩形中,为对角线.
(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,若,求的度数.
5、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.
(1)写出C点坐标 ;
(2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;
(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.
-参考答案-
一、单选题
1、B
【分析】
由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;
B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
C、是轴对称图形,不是中心对称图形,故此选项不合题意;
D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【分析】
如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
【详解】
解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
∴,,,
∴△DEF的周长,
同理可得:△GHI的周长,
∴第三次作中位线得到的三角形周长为,
∴第四次作中位线得到的三角形周长为
∴第三次作中位线得到的三角形周长为
∴这五个新三角形的周长之和为,
故选C.
【点睛】
本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
3、B
【分析】
根据平行四边形对角相等,即可求出的度数.
【详解】
解:如图所示,
∵四边形是平行四边形,
∴,
∴,
∴.
故:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
4、B
【分析】
设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
【详解】
解:设BE与DF交于点M,BE与AC交于点N,
∵ ,
∴ ,
∵,
∴ .
故选:B
【点睛】
本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
5、B
【分析】
先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.
【详解】
解:如图,∵、、、分别是、、、的中点,
∴,,,
∴四边形是平行四边形,
∵,
∴,
∴平行四边形是矩形,
又与不一定相等,
与不一定相等,
矩形不一定是正方形,
故选:B.
【点睛】
本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.
6、C
【分析】
由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
解: 矩形ABCD,
设BE=x,
∵AE为折痕,
∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,
∴Rt△EFC中,,EC=2-x,
∴,
解得:,
则点E到点B的距离为:.
故选:C.
【点睛】
本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
7、D
【分析】
根据多边形外角和定理求出正多边形的边数.
【详解】
∵正多边形的每一个外角都等于36°,
∴正多边形的边数==10.
故选:D.
【点睛】
本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
8、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
9、C
【分析】
根据多边形外角和求解即可.
【详解】
解: ,
,
故选:C
【点睛】
本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.
10、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
二、填空题
1、2
【分析】
当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算.
【详解】
解:当AP=AB时,
∵四边形ABCD为正方形,
∴AB=AD,
∴AP=AD.
∵ 将△ADE沿DE对折, 得到△PDE,
∴AD=DP,
∴AP=AD=DP,
∴△APD为等边三角形,
∴∠ADP=60°,
∴∠ADE=30°,
∴,
∴设,则,
∴在中,,即,
∴解得:;
当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,
∵AD⊥AB,
∴四边形AFPG为矩形,
∴PG=AF.
∵AP=PB,PF⊥AB,
∴AF=AB=.
∵AB=AD=DP,
∴PG=AF=PD=,
如图,作DP的中点M,连接GM,
∵
∴
又∵
∴
∴是等边三角形
∴
∵
∴∠GDP=30°.
∵∠DAE=∠DPE=90°,∠ADP=30°,
∴∠AEP=150°,
∴∠PEF=30°.
设PF=x,则PE=AE=2x,EF=x,
∴AE+EF=(2+)x= ,
∴x=2-3,
∴AE=4-6.
故答案为:2或4-6.
【点睛】
此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.
2、10
【分析】
过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
【详解】
解:过E作EF⊥AD于F,
∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
∴△ANM≌△ENM,
∴AM=EM,
∵矩形ABCD,
∴∠B=∠A=∠D=90°,
∵FE⊥AD,
∴∠AFE=∠B=∠A=90°,
∴四边形ABEF为矩形,
∴AF=BE=4,FE=AB=8,
设AM=EM=m,FM=m-4
在Rt△FEM中,根据勾股定理,即,
解得m=10,
∴MD=AD-AM=16-10=6,
在Rt△MDC中,
∴MC=.
故答案为10.
【点睛】
本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
3、
【分析】
延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.
【详解】
解:延长CF与AB交于点M,
∵FG⊥CD,AB∥CD,
∴CM⊥AB,
∵∠B=45°,BC=AD=8,
∴CM=4,
由折叠知GF=AD=8,
∵CG=4,
∴MF=CM-CF=CM-(GF-CG)=4-4,
∵∠EFC=∠A=180°-∠B=135°,
∴∠MFE=45°,
∴EF=MF=(4-4)=8-4.
故答案为:8-4.
【点睛】
本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.
4、6
【分析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
解:∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=12,
∴DE=BC=6,
故答案为6.
【点睛】
本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.
5、4
【分析】
根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.
【详解】
解:如图
四边形是菱形
,
菱形ABCD的周长为,
AO:BO=1:2,
故答案为:4
【点睛】
本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.
三、解答题
1、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析
【分析】
(1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;
(2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.
【详解】
证明:(1)∵,
∴.
又∵,
∴.
∴.
同理可得:.
∴,
又∵,
∴四边形BEFG是平行四边形;
(2)当时,四边形EFGB为菱形.
理由如下:
∵四边形BEFG是菱形,
∴,
由(1)得:,
∴,
∴为等边三角形,
∴,
∴.
【点睛】
题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.
2、(1)证明见解析;(2)证明见解析;
【分析】
(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,,利用“一组对边平行且相等的四边形是平行四边形”判断即可;
(2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴,AB=CD,
∵CE=DC,
∴AB=EC,,
∴四边形ABEC是平行四边形;
(2)∵由(1)知,四边形ABEC是平行四边形,
∴FA=FE,FB=FC.
∵四边形ABCD是平行四边形,
∴∠ABC=∠D.
又∵∠AFC=2∠ADC,
∴∠AFC=2∠ABC.
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形.
【点睛】
本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.
3、(1)见解析;(2)见解析
【分析】
(1)直接利用轴对称图形的性质得出符合题意的答案;
(2)直接利用中心对称图形的性质得出符合题意的答案.
【详解】
解:(1)如图所示:①②③都是轴对称图形;
(2)如图所示:④⑤都是中心对称图形.
.
【点睛】
此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.
4、(1)图形见解析;(2)
【分析】
(1)利用尺规根据题意即可完成作图;
(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.
【详解】
(1)如图,点E和点F即为所求;
(2)∵,∠ABD=68°,
∴∠AEB=∠AEB=68°
∴∠EAB=180°-68°-68°=44°,
∴∠EAD=90°-44°=46°,
∵AF平分∠DAE,
∴∠FAE=∠DAE=23°,
∴
【点睛】
题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.
5、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.
【分析】
(1)直接利用直线,令y=0,解方程即可;
(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;
(3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.
【详解】
解:(1)∵直线交x轴正半轴于点C.
∴当y=0时,,
解得x=6
∴点C(6,0)
故答案为(6,0);
(2)连接OM并双向延长,
∵S△AMB=S△AOB ,
∴点O到AB与点M到AB的距离相等,
∴直线OM平行于直线AB,
∵AB解析式为y=2x+8,
故设直线OM解析式为:,
将直线OM的解析式与直线BC的解析式联立得方程组得:
,
解得:
故点;
(3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴令y=0,2x+8=0,
解得x=-4,
∴A(-4,0),
令x=0,则y=8
∴B(0,8),
∵点F为AB中点,
点F横坐标为,纵坐标为
∴F(-2,4),
设G(0,n),
①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN=n-4,
∴Q(n-4,n-2),
∵点Q在直线上,
∴,
∴,
∴.
②当n<4时,如图2-2中,
点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN= 4-n,
∴Q(4- n, n+2),
∵点Q在直线上,
∴,
∴n=-2,
∴.
综上所述,满足条件的点G坐标为或.
【点睛】
本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
相关试卷
这是一份2021学年第十五章 四边形综合与测试课后测评,共26页。
这是一份初中数学第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共25页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。