搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十五章四边形专题测评试题(含答案解析)

    2022年最新精品解析京改版八年级数学下册第十五章四边形专题测评试题(含答案解析)第1页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专题测评试题(含答案解析)第2页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专题测评试题(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试课后练习题

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试课后练习题,共25页。试卷主要包含了下列命题是真命题的是,平行四边形中,,则的度数是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).

    A.4 B.10 C.6 D.8
    2、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
    A.14或15或16 B.15或16或17 C.15或16 D.16或17
    3、下列各APP标识的图案是中心对称图形的是(  )
    A. B. C. D.
    4、如图,在中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )

    A.20 B.10 C.5 D.2
    5、下列命题是真命题的是( )
    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边
    C.内错角相等 D.对角线互相垂直的四边形是菱形
    6、下列图案中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    7、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    8、平行四边形中,,则的度数是( )
    A. B. C. D.
    9、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为(  )

    A.2 B.4 C.4或 D.2或
    10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为(  )

    A. B. C.4.5 D.4.3
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.

    2、七边形内角和的度数是__________.
    3、如图,已知ABCD,和的平分线相交于,,求的度数_____.

    4、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.

    5、正五边形的一个内角与一个外角的比______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求
    (1)的面积;
    (2)△AOD的周长.


    2、如图,四边形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分别为E、F.求证:BE=BF.

    3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
    (1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
    (2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).

    4、阅读材料,回答下列问题:
    (材料提出)
    “八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.
    (探索研究)
    探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为 ;
    探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为 ;
    探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为 .
    (模型应用)
    应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A= (用含有α和β的代数式表示),∠P= .(用含有α和β的代数式表示)
    应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P= .(用含有α和β的代数式表示)
    (拓展延伸)
    拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 .(用x、y表示∠P)
    拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论 .


    5、如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
    (1)求证:△ABE≌△CDF;
    (2)连接BD,若∠1=32°,∠ADB=22°,请直接写出当∠ABE=   °时,四边形BFDE是菱形.


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
    【详解】
    解:∵∠C=90°,
    ∴∠CAB+∠CBA=90°,
    ∵点P,D分别是AF,AB的中点,
    ∴PD=BF=6,PD//BC,
    ∴∠PDA=∠CBA,
    同理,QD=AE=8,∠QDB=∠CAB,
    ∴∠PDA+∠QDB=90°,即∠PDQ=90°,
    ∴PQ==10,
    故选:B.
    【点睛】
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    2、A
    【分析】
    由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
    【详解】
    解:设新多边形的边数为n,
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.
    【点睛】
    本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
    3、C
    【分析】
    根据中心对称图形的概念对各选项分析判断即可得解.
    【详解】
    A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
    B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
    C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;
    D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、C
    【分析】
    由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.
    【详解】
    解:∵在中,,AB=10,CD是AB边上的中线

    故选:C.
    【点睛】
    本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
    5、B
    【分析】
    利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
    【详解】
    解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
    B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
    C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
    D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
    故选:B.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
    6、B
    【详解】
    A.是轴对称图形,不是中心对称图形,故不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故符合题意;
    C.是轴对称图形,不是中心对称图形,故不符合题意;
    D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
    故选B
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    7、A
    【分析】
    根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
    【详解】
    解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
    A选项是中心对称图形.故本选项正确.
    故选:A.
    【点睛】
    本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
    8、B
    【分析】
    根据平行四边形对角相等,即可求出的度数.
    【详解】
    解:如图所示,

    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴.
    故:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
    9、D
    【分析】
    根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
    【详解】
    解:当△EAP与△PBQ全等时,有两种情况:
    ①当EA=PB时,△APE≌△BQP(SAS),
    ∵AB=10cm,AE=6cm,
    ∴BP=AE=6cm,AP=4cm,
    ∴BQ=AP=4cm;
    ∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
    ∴点P和点Q的运动时间为:4÷2=2s,
    ∴v的值为:4÷2=2cm/s;
    ②当AP=BP时,△AEP≌△BQP(SAS),
    ∵AB=10cm,AE=6cm,
    ∴AP=BP=5cm,BQ=AE=6cm,
    ∵5÷2=2.5s,
    ∴2.5v=6,
    ∴v=.
    故选:D.
    【点睛】
    本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
    10、A
    【分析】
    根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠B=∠DCF=90°,BC=DC,
    在△CBE和△DCF中,

    ∴△CBE≌△DCF(SAS),
    ∴∠BCE=∠CDF,
    ∵∠BCE+∠DCH=90°,
    ∴∠CDF+∠DCH=90°,
    ∴∠DHC=∠DHE=90°,
    ∵点G为DE的中点,
    ∴GH=DE,
    ∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
    ∴,
    ∴GH=.
    故选A.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
    二、填空题
    1、
    【分析】
    根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.
    【详解】
    解:连接BE,连接AE交FG于O,如图,

    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    ∵E点为CD的中点,
    ∴CE=DE=1,BE⊥CD,
    在Rt△BCE中,BE=CE=,
    ∵AB∥CD,
    ∴BE⊥AB,
    ∴.
    ∴,
    设AF=x,
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    ∴FE=FA=x,
    ∴BF=2-x,
    在Rt△BEF中,(2-x)2+()2=x2,
    解得:,
    在Rt△AOF中,,
    ∴.
    故答案为: .
    【点睛】
    本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    2、900°900度
    【分析】
    根据多边形内角和公式计算即可.
    【详解】
    解:七边形内角和的度数是,
    故答案为:900°.
    【点睛】
    本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:.
    3、110°度
    【分析】
    过点E作EH∥AB,然后由AB∥CD,可得AB∥EH∥CD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.
    【详解】
    解:过点E作EH∥AB,如图所示,

    ∵AB∥CD,
    ∴AB∥EH∥CD,
    ∴∠ABE=∠BEH,∠CDE=∠DEH,
    ∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,
    ∴∠BEH+∠DEH=220°,
    ∴∠ABE+∠CDE=220°,
    ∵∠ABE和∠CDE的平分线相交于F,
    ∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,
    ∵∠BFD+∠BED+∠EBF+∠EDF=360°,
    ∴∠BFD=110°.
    故答案为:110°.
    【点睛】
    本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点E作EH∥AB,也是解题的关键.
    4、(9,4)、(-3,4)、(3,-4)
    【分析】
    根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.
    【详解】
    ∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),
    ∴AD=BO=6,AD∥BO,
    ∴D的横坐标是3+6=9,纵坐标是4,
    即D的坐标是(9,4),
    同理可得出D的坐标还有(-3,4)、(3,-4).
    故答案为:(9,4)、(-3,4)、(3,-4).
    【点睛】
    本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.
    5、
    【分析】
    根据公式分别求出一个内角与一个外角的度数,即可得到答案.
    【详解】
    解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,
    ∴正五边形的一个内角与一个外角的比为,
    故答案为:.
    【点睛】
    此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.
    三、解答题
    1、(1)48(2)
    【分析】
    (1)利用勾股定理先求出高AC,故可求解面积;
    (2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.
    【详解】
    解:(1)∵四边形ABCD是平行四边形,且AD=8


    ∴BC=AD=8
    ∵AC⊥BC
    ∴∠ACB=90°
    在Rt△ABC中,由勾股定理得AC2=AB2-BC2


    (2)∵四边形ABCD是平行四边形,且AC=6

    ∵∠ACB=90°,BC=8
    ∴,

    ∴.
    【点睛】
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
    2、见解析
    【分析】
    根据菱形的性质,可得AD=DC,AB=BC,∠A=∠C.从而得到△AED≌△CFD.从而得到AE=CF.即可求证.
    【详解】
    证明:∵四边形ABCD是菱形,
    ∴AD=DC,AB=BC,∠A=∠C.
    ∵DE⊥AB,DF⊥BC,
    ∴∠AED=∠CFD=90°.
    ∴△AED≌△CFD(AAS).
    ∴AE=CF.
    ∴AB﹣AE=BC﹣CF.
    即:BE=BF.
    【点睛】
    本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.
    3、(1)见解析;(2)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出符合题意的答案;
    (2)直接利用中心对称图形的性质得出符合题意的答案.
    【详解】
    解:(1)如图所示:①②③都是轴对称图形;
    (2)如图所示:④⑤都是中心对称图形.

    【点睛】
    此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.
    4、∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°.
    【分析】
    探索一:根据三角形的内角和定理,结合对顶角的性质可求解;
    探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;
    探索三:运用探索一和探索二的结论即可求得答案;
    应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;
    应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;
    拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案;
    拓展二:运用探索一的结论及角平分线定义即可求得答案.
    【详解】
    解:探索一:如图1,

    ∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,
    ∴∠A+∠B=∠C+∠D,
    故答案为∠A+∠B=∠C+∠D;
    探索二:如图2,

    ∵AP、CP分别平分∠BAD、∠BCD,
    ∴∠1=∠2,∠3=∠4,
    由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,
    ∴∠B﹣∠P=∠P﹣∠D,
    即2∠P=∠B+∠D,
    ∵∠B=36°,∠D=14°,
    ∴∠P=25°,
    故答案为25°;
    探索三:由①∠D+2∠1=∠B+2∠3,

    由②2∠B+2∠3=2∠P+2∠1,
    ①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1
    ∠D+2∠B=2∠P+∠B.
    ∴∠P=.
    故答案为:∠P=.
    应用一:如图4,

    延长BM、CN,交于点A,
    ∵∠M=α,∠N=β,α+β>180°,
    ∴∠AMN=180°﹣α,∠ANM=180°﹣β,
    ∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;
    ∵BP、CP分别平分∠ABC、∠ACB,
    ∴∠PBC=∠ABC,∠PCD=∠ACD,
    ∵∠PCD=∠P+∠PBC,
    ∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,
    故答案为:α+β﹣180°,;
    应用二:如图5,

    延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,
    ∵∠M=α,∠N=β,α+β<180°,
    ∴∠A=180°﹣α﹣β,
    ∵BP平分∠MBC,CP平分∠NCR,
    ∴BP平分∠ABT,CP平分∠ACB,
    由应用一得:∠P=∠A=,
    故答案为:;
    拓展一:如图6,

    由探索一可得:
    ∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,
    ∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,
    ∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,
    ∠PAB=∠CAB,∠PDB=∠CDB,
    ∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,
    ∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,
    ∴∠P=,
    故答案为:∠P=;
    拓展二:如图7,

    ∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,
    ∴∠PAD=∠BAD,∠PCD=90°+∠BCD,
    由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,
    ②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,
    ③﹣①,得:2∠P﹣∠B=∠D+180°,
    ∴2∠P﹣∠B﹣∠D=180°,
    故答案为:2∠P﹣∠B﹣∠D=180°.
    【点睛】
    本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.
    5、(1)见解析;(2)12
    【分析】
    (1)由“SAS”可证△ABE≌△CDF;
    (2)通过证明BE=DE,可得结论.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴AB=CD,∠BAD=∠BCD,
    ∴∠1=∠DCF,
    在△ABE和△CDF中,

    ∴△ABE≌△CDF(SAS);
    (2)当∠ABE=10°时,四边形BFDE是菱形,
    理由如下:∵△ABE≌△CDF,
    ∴BE=DF,AE=CF,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,
    ∴AD+AE=BC+CF,
    ∴BF=DE,
    ∴四边形BFDE是平行四边形,
    ∵∠1=32°,∠ADB=22°,
    ∴∠ABD=∠1-∠ADB=10°,
    ∵∠ABE=12°,
    ∴∠DBE=22°,
    ∴∠DBE=∠ADB=22°,
    ∴BE=DE,
    ∴平行四边形BFDE是菱形,
    故答案为:12.
    【点睛】
    本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试巩固练习:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共28页。试卷主要包含了下列图形中,是中心对称图形的是,下列说法中,正确的是,如图,M等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试练习:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共1页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map