数学八年级下册第十五章 四边形综合与测试同步达标检测题
展开
这是一份数学八年级下册第十五章 四边形综合与测试同步达标检测题,共29页。
京改版八年级数学下册第十五章四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案中,是中心对称图形,但不是轴对称图形的是( )A. B.C. D.2、下图是文易同学答的试卷,文易同学应得( )A.40分 B.60分 C.80分 D.100分3、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )A. B.C. D.4、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是( )A. B. C. D.5、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )A.1 B. C. D.26、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是( )A.75° B.60° C.55° D.40°7、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )A. B. C. D.8、下列图形中,既是中心对称图形也是轴对称图形的是( )A.圆 B.平行四边形 C.直角三角形 D.等边三角形9、下列几何图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.10、下面图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为 _____.2、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则______.3、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.4、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF;已知.(1)以点E,O,F,D为顶点的图形的面积为________________;(2)线段EF的最小值是_______________.5、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)的面积;(2)△AOD的周长.
2、已知:如图,在中,,,.求证:互相平分.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断△ACF的形状,并说明理由;(2)求△ACF的面积;3、如图是两张10×10的方格纸,方格纸中的每个小正方形的边长均为1.请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形.(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形.4、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.(1)写出C点坐标 ;(2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.5、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________ -参考答案-一、单选题1、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.2、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键3、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:.【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.5、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,, ∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴ ,即=.故选:B.【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.6、C【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=55°,故选:C.【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.7、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+,∴AB+BC=3+-2=1+.等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2AB•BC=4+2,∵AB2+BC2=AC2=4,∴2AB•BC=2,AB•BC=,即三角形的面积为×AB•BC=.故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.8、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.二、填空题1、【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.【详解】解:延长CF与AB交于点M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折叠知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案为:8-4.【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.2、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可 .【详解】解:<20,∴,∵能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6.【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键.3、16【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.4、1 【分析】(1)连接OA、OD,根据正方形的性质和全等三角形的判定证明△OAE≌△ODF,利用全等三角形的性质得出四边形EOFD的面积等于△AOD的面积即可求解;(2)根据全等三角形的性质证得△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,则EF最小,求解此时在OE即可解答.【详解】解:(1)连接OA、OD,∵四边形ABCD是正方形,∴OA=OD,∠AOD=90°,∠EAO=∠FDO=45°,∴∠AOE+∠DOE=90°,∵OE⊥OF,∴∠DOF+∠DOE=90°,∴∠AOE=∠DOF,在△OAE和△ODF中,,∴△OAE≌△ODF(ASA),∴S△OAE=S△ODF,∴S四边形EOFD = S△ODE+S△ODF= S△ODE+S△OAE= S△AOD= S正方形ABCD,∵AD=2,∴S四边形EOFD= ×4=1,故答案为:1;(2)∵△OAE≌△ODF,∴OE=OF,∴△EOF为等腰直角三角形,则EF=OE,当OE⊥AD时OE最小,即EF最小,∵OA=OD,∠AOD=90°,∴OE=AD=1,∴EF的最小值,故答案为:.【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.5、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵•AB•BF=54,∴BF=12. 在Rt△ABF中,AB=9,BF=12,由勾股定理得,. ∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5. ∴EC=DC-DE=9-5=4. ∴△FCE的面积=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四边形ABCD是平行四边形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.2、证明见解析【分析】连接,由三角形中位线定理可得,,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】
证明:连接,∵AD=DB,BE=EC,∴,∵BE=EC,AF=FC,∴,∴四边形ADEF是平行四边形,∴AE,DF互相平分.【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.(1)△ACF是等腰三角形,理由见解析;(2)10;(3)3、(1)画图见解析;(2)画图见解析【分析】(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;(2)利用矩形的性质结合其周长得出答案,答案不唯一.【详解】解:(1)如图1所示:(2)如图2所示:答案不唯一.【点睛】本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质.4、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.【分析】(1)直接利用直线,令y=0,解方程即可;(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;(3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.【详解】解:(1)∵直线交x轴正半轴于点C.∴当y=0时,,解得x=6∴点C(6,0)故答案为(6,0);(2)连接OM并双向延长,∵S△AMB=S△AOB ,∴点O到AB与点M到AB的距离相等,∴直线OM平行于直线AB,∵AB解析式为y=2x+8,故设直线OM解析式为:,将直线OM的解析式与直线BC的解析式联立得方程组得:,解得:故点;(3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴令y=0,2x+8=0,解得x=-4,∴A(-4,0),令x=0,则y=8∴B(0,8),∵点F为AB中点,点F横坐标为,纵坐标为
∴F(-2,4),设G(0,n),
①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,∴FG=QG,∠FGQ=90°,∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,∵FM⊥MN,QN⊥MN,∴∠M=∠N=90°,∴∠MFG+∠MGF=90°,∴∠MFG=∠NGQ,在△FMG和△GNQ中,,∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN=n-4,
∴Q(n-4,n-2),∵点Q在直线上,∴,∴,∴.②当n<4时,如图2-2中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,∴FG=QG,∠FGQ=90°,∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,∵FM⊥MN,QN⊥MN,∴∠M=∠N=90°,∴∠MFG+∠MGF=90°,∴∠MFG=∠NGQ,在△FMG和△GNQ中,,∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN= 4-n,
∴Q(4- n, n+2),∵点Q在直线上,∴,∴n=-2,
∴.
综上所述,满足条件的点G坐标为或.【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,∴,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形;(2)∵点 E、 F、G、H分别是OA、OB、OC、OD的中点,∴,∴ ,∵的周长为2(AB+BC)=32,∴ ,∴ ,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为 .【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.
相关试卷
这是一份数学第十五章 四边形综合与测试课时作业
这是一份初中北京课改版第十五章 四边形综合与测试习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共33页。试卷主要包含了如图,M等内容,欢迎下载使用。