搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十五章四边形专项测试试卷

    2022年最新强化训练京改版八年级数学下册第十五章四边形专项测试试卷第1页
    2022年最新强化训练京改版八年级数学下册第十五章四边形专项测试试卷第2页
    2022年最新强化训练京改版八年级数学下册第十五章四边形专项测试试卷第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共1页。
    京改版八年级数学下册第十五章四边形专项测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、平行四边形中,,则的度数是( )
    A. B. C. D.
    2、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )

    A. B. C. D.
    3、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )

    A. B. C. D.54
    4、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(  )

    A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
    5、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )

    A.1 B.1.5 C.2 D.4
    6、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )

    A.2 B.2或1.5 C.2.5 D.2.5或2
    7、已知正多边形的一个外角等于45°,则该正多边形的内角和为(  )
    A.135° B.360° C.1080° D.1440°
    8、如图,四边形ABCD是平行四边形,下列结论中错误的是( )

    A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BD
    C.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC
    9、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为(  )
    A.6 B.6.5 C.10 D.13
    10、下列测量方案中,能确定四边形门框为矩形的是( )
    A.测量对角线是否互相平分 B.测量两组对边是否分别相等
    C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.

    2、若正边形的每个内角都等于120°,则这个正边形的边数为________.
    3、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.

    4、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.

    5、若点A(m,5)与点B(-4,n)关于原点成中心对称,则m+n=________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,
    (1)如图1,求证:CD=BE
    (2)如图2,过点A作AF⊥BE,写出AF,BD,CD之间的数量关系并说明理由.

    2、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.
    (1)求证:;
    (2)若,,求 BG的长.

    3、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.
    (1)求证:四边形ABCD是菱形;
    (2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.

    4、如图,YABCD的对角线AC 、 BD相交于点O ,BD=12cm ,AC=6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O 以2cm /s 的速度向点D运动.

    (1)若点E 、F同时运动,设运动时间为t秒,当t 为何值时,四边形AECF是平行四边形.
    (2)在(1)的条件下,当AB为何值时,YAECF是菱形;
    (3)求(2)中菱形AECF的面积.
    5、如图1,在平面直角坐标系中,且;

    (1)试说明是等腰三角形;
    (2)已知.写出各点的坐标:A( , ),B( , ),C( , ).
    (3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.
    ①若的一条边与BC平行,求此时点M的坐标;
    ②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据平行四边形对角相等,即可求出的度数.
    【详解】
    解:如图所示,

    ∵四边形是平行四边形,
    ∴,
    ∴,
    ∴.
    故:B.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
    2、C
    【分析】
    由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
    【详解】
    解: 矩形ABCD,

    设BE=x,
    ∵AE为折痕,
    ∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
    Rt△ABC中,
    ∴Rt△EFC中,,EC=2-x,
    ∴,
    解得:,
    则点E到点B的距离为:.
    故选:C.
    【点睛】
    本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
    3、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】

    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    4、B
    【分析】
    先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AD∥BC,且AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,
    ∴BD⊥AE,
    ∴□DBCE为矩形,故本选项不符合题意;
    B、∵DE⊥DC,
    ∴∠EDB=90°+∠CDB>90°,
    ∴四边形DBCE不能为矩形,故本选项符合题意;
    C、∵∠ADB=90°,
    ∴∠EDB=90°,
    ∴□DBCE为矩形,故本选项不符合题意;
    D、∵CE⊥DE,
    ∴∠CED=90°,
    ∴□DBCE为矩形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
    5、C
    【分析】
    取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.
    【详解】
    解:取线段AC的中点G,连接EG,如图所示.

    ∵AC=BC=8,∠BCA=60°,
    ∴△ABC为等边三角形,且AD为△ABC的对称轴,
    ∴CD=CG=AB=4,∠ACD=60°,
    ∵∠ECF=60°,
    ∴∠FCD=∠ECG,
    在△FCD和△ECG中,

    ∴△FCD≌△ECG(SAS),
    ∴DF=GE.
    当EG∥BC时,EG最小,
    ∵点G为AC的中点,
    ∴此时EG=DF=CD=BC=2.
    故选:C.
    【点睛】
    本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.
    6、D
    【分析】
    根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.
    【详解】
    解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
    ∵AB=BC=10厘米,AE=4厘米,
    ∴BE=CP=6厘米,
    ∴BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    当,即点Q的运动速度与点P的运动速度不相等,
    ∴BP≠CQ,
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点P,Q运动的时间t=(秒).
    综上t的值为2.5或2.
    故选:D.
    【点睛】
    本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.
    7、C
    【分析】
    先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.
    【详解】
    解: 正多边形的一个外角等于45°,
    这个正多边形的边数为:
    这个多边形的内角和为:
    故选C
    【点睛】
    本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.
    8、D
    【分析】
    由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.
    【详解】
    解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;
    当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;
    当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;
    当▱ABCD是菱形时,AB=BC,故D符合题意;
    故选D
    【点睛】
    本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.
    9、B
    【分析】
    根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:∵直角三角形两直角边长为5和12,
    ∴斜边=,
    ∴此直角三角形斜边上的中线的长==6.5.
    故选:B.
    【点睛】
    本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.
    10、D
    【分析】
    由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
    【详解】
    解:A、∵对角线互相平分的四边形是平行四边形,
    ∴对角线互相平分且相等的四边形才是矩形,
    ∴选项A不符合题意;
    B、∵两组对边分别相等是平行四边形,
    ∴选项B不符合题意;
    C、∵对角线互相平分且相等的四边形才是矩形,
    ∴对角线相等的四边形不是矩形,
    ∴选项C不符合题意;
    D、∵对角线交点到四个顶点的距离都相等,
    ∴对角线互相平分且相等,
    ∵对角线互相平分且相等的四边形是矩形,
    ∴选项D符合题意;
    故选:D.
    【点睛】
    本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
    二、填空题
    1、
    【分析】
    设 则再利用矩形的性质建立方程求解 从而可得答案.
    【详解】
    解: 四边形BHDG为菱形,


    AD=3AB,
    设 则

    矩形ABCD,


    解得:


    故答案为:
    【点睛】
    本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.
    2、6
    【分析】
    多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.
    【详解】
    解:设所求正边形边数为,
    则,
    解得,
    故答案是:6.
    【点睛】
    本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.
    3、
    【分析】
    设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.
    【详解】
    解:设,
    四边形为正方形,
    ,,
    点为的中点,




    四边形为正方形,


    故答案为:.
    【点睛】
    本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.
    4、(8,0)或(-2,0)-2,0)或(8,0)
    【分析】
    由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.
    【详解】
    解:∵四边形OABC矩形,且点A(3,0),点C(0,9),
    ∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,
    ∵将△ABC沿DE对折,恰好能使点A与点C重合.
    ∴AE=CE,
    ∵CE2=BC2+BE2,
    ∴CE2=9+(9-CE)2,
    ∴CE=5,
    ∴AE=5,
    ∵△AEP为等腰三角形,且∠EAP=90°,
    ∴AE=AP=5,
    ∴点E坐标(8,0)或(-2,0)
    故答案为:(8,0)或(-2,0)
    【点睛】
    本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.
    5、
    【分析】
    根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.
    【详解】
    解:∵点A(m,5)与点B(-4,n)关于原点成中心对称,
    ∴m=4,n=-5,
    ∴m+n=-5+4=-1,
    故答案为:-1.
    【点睛】
    本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.
    三、解答题
    1、(1)证明见解析;(2)BD= CD+2AF,理由见解析
    【分析】
    (1)延长BA与CD的延长线交于点G,先证明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分线,得到∠GBD=∠CBD,即可证明△BDG≌△BDC得到CD=GD,则;
    (2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,,则,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根据BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.
    【详解】
    解:(1)如图所示,延长BA与CD的延长线交于点G,
    ∵∠BAC=90°,
    ∴∠CAG=90°,
    ∵CD⊥BE,
    ∴∠EDC=∠GDB=∠BAE=90°,
    又∵∠AEB=∠DEC,
    ∴∠ABE=∠DCE,
    在△ABE和△ACG中,

    ∴△ABE≌△ACG(ASA),
    ∴BE=CG,
    ∵BD是∠ABC的角平分线,
    ∴∠GBD=∠CBD,
    在△BDG和△BDC中,

    ∴△BDG≌△BDC(ASA),
    ∴CD=GD,
    ∴;

    (2)BD= CD+2AF,理由如下:
    如图所示,连接AD,取BE中点H,连接AH,
    由(1)得CD=GD,,
    ∵△BAE和△CAG都是直角三角形,H为BE中点,D为CG中点,
    ∴,,
    ∴,
    ∴∠ABH=∠BAH,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=45°,
    又∵BD平分∠ABC,
    ∴∠ABH=∠BAH=22.5°,
    ∴∠AHF=∠ABH+∠BAH=45°,
    ∵AF⊥DH,
    ∴HF=DF,∠AFH=90°,
    ∴∠HAF=45°,
    ∴AF=HF,
    ∴DH=2AF,
    ∴BD=BH+HD=BH+2AF=CD+2AF.

    【点睛】
    .本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    2、(1)见解析;(2)
    【分析】
    (1)由正方形的性质可得,,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE;
    (2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长
    【详解】
    (1)∵BF⊥DE
    ∴∠BFE=90°
    ∵四边形ABCD是正方形
    ∴∠DCE=90°,

    ∴∠CBG+∠E=∠CDE+∠E,
    ∴∠CBG=∠CDE
    ∴△BCG≌△DCE
    ∴CG=CE
    (2)∵,且,,

    ∵CG=CE
    ∴,
    在中,
    【点睛】
    本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.
    3、(1)见解析;(2)正方形ABCD的面积为
    【分析】
    (1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;
    (2)证明菱形ABCD是正方形,即可得出答案.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AO=OC,
    ∵△ACE是等边三角形,
    ∴EO⊥AC (三线合一),
    即BD⊥AC,
    ∴▱ABCD是菱形;
    (2)解:∵△ACE是等边三角形,
    ∴∠EAC=60°
    由(1)知,EO⊥AC,AO=OC
    ∴∠AEO=∠OEC=30°,△AOE是直角三角形,
    ∵∠AED=2∠EAD,
    ∴∠EAD=15°,
    ∴∠DAO=∠EAO﹣∠EAD=45°,
    ∵▱ABCD是菱形,
    ∴∠BAD=2∠DAO=90°,
    ∴菱形ABCD是正方形,
    ∴正方形ABCD的面积=AB2=a2.
    【点睛】
    本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.
    4、(1)t=2s;(2)AB=;(3)24
    【分析】
    (1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;
    (2)若是菱形,则AC垂直于BD,即有,故AB可求;
    (3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.
    【详解】
    解:(1)∵四边形ABCD为平行四边形,
    ∴AO=OC,EO=OF,
    ∵BO=OD=6cm,
    ∴,
    ∴,
    ∴,
    ∴当t为2秒时,四边形AECF是平行四边形;
    (2)若四边形AECF是菱形,则,


    ∴当AB为时,平行四边形是菱形;
    (3)由(1)(2)可知当t=2s,AB=时,四边形AECF是菱形,
    ∴EO=6−t=4,
    ∴EF=8,
    ∴菱形AECF的面积=.
    【点睛】
    本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.
    5、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【分析】
    (1)设,,,则,由勾股定理求出,即可得出结论;
    (2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;
    (3)①分当时,;当时,;得出方程,解方程即可;
    ②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.
    【详解】
    解:(1)证明:设,,,则,
    在中,,

    ∴是等腰三角形;
    (2)∵,,
    ∴,
    ∴,,,.
    ∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),
    故答案为:12,0;-8,0;0,16;
    (3)①如图3-1所示,
    当MN∥BC时,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴AM=BM,
    ∴M为AB的中点,
    ∵,
    ∴,
    ∴,
    ∴点M的坐标为(2,0);

    如图3-2所示,当ON∥BC时,
    同理可得,
    ∴,
    ∴M点的坐标为(4,0);
    ∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;

    ②如图3-3所示,当OM=OE时,
    ∵E是AC的中点,∠AOC=90°,,
    ∴,
    ∴此时M的坐标为(0,10);

    如图3-4所示,当时,
    ∴此时M点与A点重合,
    ∴M点的坐标为(12,0);

    如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,
    ∵OE=AE,EF⊥OA,
    ∴,
    ∴,
    设,则,
    ∵,
    ∴,
    解得,
    ∴M点的坐标为(,0);
    综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【点睛】
    本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.

    相关试卷

    初中数学第十五章 四边形综合与测试同步测试题:

    这是一份初中数学第十五章 四边形综合与测试同步测试题,共22页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共30页。试卷主要包含了下列图形中,是中心对称图形的是,下列说法中正确的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共1页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map