搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十五章四边形重点解析试题(含答案解析)

    2022年最新强化训练京改版八年级数学下册第十五章四边形重点解析试题(含答案解析)第1页
    2022年最新强化训练京改版八年级数学下册第十五章四边形重点解析试题(含答案解析)第2页
    2022年最新强化训练京改版八年级数学下册第十五章四边形重点解析试题(含答案解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共25页。试卷主要包含了下列图案中,是中心对称图形的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是(  )A. B.C. D.2、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.3、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是(  )A. B. C. D.4、如图,ABC是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是(    A.ABC都不在 B.只有BC.只有AC D.ABC5、下列图案中,是中心对称图形的是(    A. B. C. D.6、下列图形中,既是中心对称图形,又是轴对称图形的个数是(    A.1 B.2 C.3 D.47、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.8、下列图形中,既是轴对称图形又是中心对称图形的是(    ).A. B.C. D.9、下列图形中,是中心对称图形的是(  )A. B.C. D.10、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是(    A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<12第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、七边形内角和的度数是__________.2、已知长方形ABCD中,AB=4,BC=10,MBC中点,PAD上的动点,则以BMP为顶点组成的等腰三角形的底边长是______________________.3、如图,直线l经过正方形ABCD的顶点B,点AC到直线l的距离分别是1,3,则正方形ABCD面积是 _____.4、一个正多边形的内角和为540°,则它的一个外角等于 ______.5、若点Pm,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数y=- x+3的图像分别与x轴、y轴交于点AB,以线段AB为边在第一象限内作等腰直角三角形ABC∠BAC=90°,(1)求过BC两点的直线的解析式.(2)作正方形ABDC,求点D的坐标.2、如图,在中,过点于点,点在边上,,连接(1)求证:四边形是矩形;(2)若,求证:平分3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.(1)如图①,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD      正四边形;(填“是”或“不是”)(2)如图②,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由.4、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.5、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点DDPOC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由. -参考答案-一、单选题1、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.2、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.3、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.4、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD为直角三角形,DAC中点,∵覆盖半径为300 ,ABC三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.5、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.10、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,中,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.二、填空题1、900°900度【分析】根据多边形内角和公式计算即可.【详解】解:七边形内角和的度数是故答案为:900°.【点睛】本题考查了多边形内角和公式,解题关键是熟记n边形内角和公式:2、5或【分析】分三种情况:①当BP=PM时,点PBM的垂直平分线上,取BM的中点N,过点NNPBMADP,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解.【详解】解:BC=10,MBC中点,BM=5,当△BMP为等腰三角形时,分三种情况:①当BP=PM时,点PAM的垂直平分线上,BM的中点N,过点NNPADADP,如图1所示:则△PBM是等腰三角形∴底边BM的长为5②当BM=PM=5时,当∠PMB为锐角如图2时,则四边形ABNP是矩形,PN=AB=4,MN= RtPBN中,③当BM=PM=5时,当∠PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得 RtPBN中,综上,以BMP为顶点组成的等腰三角形的底边长是:5 或故答案为:5 或【点睛】本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.3、10【分析】根据正方形的性质,结合题意易求证,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.【详解】∵四边形ABCD是正方形,根据题意可知:∴在中,∵在中,∴正方形ABCD的面积是10.故答案为:10.【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.4、72°【分析】根据题意求得正多边形的边数,进而求得答案【详解】解:∵一个正多边形的内角和为540°,即故答案为:【点睛】本题考查了正多边形的内角和和外角和公式,根据内角和公式求得边数是解题的关键.5、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点Pxy)关于原点O的对称点是P1(-x,-y).【详解】解:因为点Pm,﹣2)与Q(﹣4,2)关于原点对称,所以m-4=0,m=4,故答案为:4.【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.三、解答题1、(1),(2)(3,7)【分析】(1)先根据一次函数的解析式求出AB两点的坐标,再作CEx轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;(2)由正方形的性质以及△ABO≌△CAE,同理可得△ABO≌△BDM,进而可得点D的坐标.【详解】(1)∵一次函数y=-x+3中,x=0得:y=3,令y=0,解得x=4,B的坐标是(0,3),A的坐标是(4,0),如图,作CEx轴于点E
     ∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO在△ABO与△CAE中,∴△ABO≌△CAE(AAS),OB=AE=3,OA=CE=4,OE=OA+AE=7,则点C的坐标是(7,4),设直线BC的解析式是y=kx+b(k≠0),根据题意得:解得∴直线BC的解析式是y=x+3.(2)如图,作DMy轴于点M
     ∵四边形ABDC为正方形,由(1)知△ABO≌△CAE同理可得:△ABO≌△BDMDM=OB=3,BM=OA=4,OM=OB+BM=7,则点D的坐标是(3,7).【点睛】本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形.2、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,.即 四边形是平行四边形.四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 中,由勾股定理,得平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;(3)由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDCAEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出ABCE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形.理由:∵ABBCCDDA∴四边形ABCD是菱形,ACBD∴四边形ABCD是正方形.∴四边形ABCD是正四边形.故答案为:是.(2)证明:∵凸五边形ABCDE的各条边都相等,ABBCCDDEEA在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEAEABSSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB∴五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形.ACBECE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,∴△ABE≌△BCA≌△DECSSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC在△ACE和△BEC中,∴△ACE≌△BECSSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,ABCE∴∠ABE=∠BEC,∠BAC=∠ACE∴∠CAE=∠CEA=2∠ABE∴∠BAE=3∠ABE同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE∴五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如图, ,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,【详解】解:(1)如图所示,AB=4,BC=3,∴△ABC是直角三角形;
     (2)如图所示, ∴△ABC是直角三角形;
     (3)如图所示,∴∠ABC=90°,∴四边形ABCD是正方形,
    【点睛】本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.5、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析【分析】(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;(2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BDACDO=OC,即可证明平行四边形OCDP是正方形;【详解】解:(1)四边形CODP是菱形,理由如下:DPOC,且DP=OC∴四边形CODP是平行四边形,又∵四边形ABCD是矩形,OD=OC∴平行四边形OCDP是菱形;(2)四边形CODP是矩形,理由如下:DPOC,且DP=OC∴四边形CODP是平行四边形,又∵四边形ABCD是菱形,BDAC∴∠DOC=90°,∴平行四边形OCDP是矩形;(3)四边形CODP是正方形,理由如下:DPOC,且DP=OC∴四边形CODP是平行四边形,又∵四边形ABCD是正方形,BDACDO=OC∴∠DOC=90°,平行四边形CODP是菱形,∴菱形OCDP是正方形.【点睛】本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件. 

    相关试卷

    北京课改版八年级下册第十五章 四边形综合与测试练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共27页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共30页。试卷主要包含了下列图形中,是中心对称图形的是,下列说法中正确的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试练习:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共1页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map