![2022年最新强化训练京改版八年级数学下册第十五章四边形章节练习试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12705923/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练京改版八年级数学下册第十五章四边形章节练习试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12705923/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练京改版八年级数学下册第十五章四边形章节练习试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12705923/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版第十五章 四边形综合与测试达标测试
展开
这是一份北京课改版第十五章 四边形综合与测试达标测试,共37页。
京改版八年级数学下册第十五章四边形章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,是中心对称图形的是( )
A. B.
C. D.
2、平行四边形中,,则的度数是( )
A. B. C. D.
3、如图,四边形ABCD是平行四边形,下列结论中错误的是( )
A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BD
C.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC
4、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5、下列测量方案中,能确定四边形门框为矩形的是( )
A.测量对角线是否互相平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
6、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )
A.5 B.6 C.8 D.10
7、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
8、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
9、下列图形既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
10、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )
A.16 B.24 C.32 D.40
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _____.
2、如图,已知在矩形中,,,将沿对角线AC翻折,点B落在点E处,连接,则的长为_________.
3、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.
4、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.
5、点P(1,2)关于原点中心对称的点的坐标为_______.
三、解答题(5小题,每小题10分,共计50分)
1、阅读材料,回答下列问题:
(材料提出)
“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.
(探索研究)
探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为 ;
探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为 ;
探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为 .
(模型应用)
应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A= (用含有α和β的代数式表示),∠P= .(用含有α和β的代数式表示)
应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P= .(用含有α和β的代数式表示)
(拓展延伸)
拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 .(用x、y表示∠P)
拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论 .
2、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PC=m.
(1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为 ,此时若△APD是等腰直角三角形,求点D的坐标;
(2)直线y=2x+b过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.
3、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQ⊥AB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为S(S>0),点P的运动时间为t秒.
(1)①BC的长为 ;
②用含t的代数式表示线段PQ的长为 ;
(2)当QM的长度为10时,求t的值;
(3)求S与t的函数关系式;
(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.
4、(探究发现)
(1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是 .
(类比应用)
(2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.
(拓展延伸)
(3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.
5、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明BE=DF.
-参考答案-
一、单选题
1、A
【分析】
把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
【详解】
解:选项A中的图形是中心对称图形,故A符合题意;
选项B中的图形不是中心对称图形,故B不符合题意;
选项C中的图形不是中心对称图形,故C不符合题意;
选项D中的图形不是中心对称图形,故D不符合题意;
故选A
【点睛】
本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
2、B
【分析】
根据平行四边形对角相等,即可求出的度数.
【详解】
解:如图所示,
∵四边形是平行四边形,
∴,
∴,
∴.
故:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.
3、D
【分析】
由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.
【详解】
解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;
当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;
当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;
当▱ABCD是菱形时,AB=BC,故D符合题意;
故选D
【点睛】
本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.
4、D
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.是轴对称图形,不是中心对称图形,故本选项符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、D
【分析】
由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【详解】
解:A、∵对角线互相平分的四边形是平行四边形,
∴对角线互相平分且相等的四边形才是矩形,
∴选项A不符合题意;
B、∵两组对边分别相等是平行四边形,
∴选项B不符合题意;
C、∵对角线互相平分且相等的四边形才是矩形,
∴对角线相等的四边形不是矩形,
∴选项C不符合题意;
D、∵对角线交点到四个顶点的距离都相等,
∴对角线互相平分且相等,
∵对角线互相平分且相等的四边形是矩形,
∴选项D符合题意;
故选:D.
【点睛】
本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
6、A
【分析】
由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
【详解】
解:∵四边形ABCD是菱形,AC=6,BD=8,
∴OA=OC=3,OB=OD=4,AO⊥BO,
在Rt△AOB中,由勾股定理得:,
故选:A.
【点睛】
本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
7、A
【分析】
多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.
【详解】
解:多边形的外角和是360度,
又多边形的外角和是内角和的2倍,
多边形的内角和是180度,
这个多边形是三角形.
故选:A.
【点睛】
考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.
8、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
9、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
10、C
【分析】
由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.
【详解】
∵D,E分别是AB,AC的中点,
∴AE=CE,AD=BD,DE为△ABC的中位线,
∴DE//BC,DE=BC,
∵∠ABC=90°,
∴∠ADE=∠ABC=90°,
在△MBD和△EDA中,,
∴△MBD≌△EDA,
∴MD=AE,DE=MB,
∵DE//MB,
∴四边形DMBE是平行四边形,
∴MD=BE,
∵AC=18,BC=14,
∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.
故选:C.
【点睛】
本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
二、填空题
1、10
【分析】
根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.
【详解】
∵四边形ABCD是正方形,
∴,,
∴.
根据题意可知:,,
∴,,
∴在和中,,
∴,
∴.
∵在中,,
∴正方形ABCD的面积是10.
故答案为:10.
【点睛】
本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.
2、
【分析】
过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.
【详解】
解:如图所示:过点E作EF⊥AD于点F,
有折叠的性质可知:∠ACB=∠ACE,
∵AD∥BC,
∴∠ACB=∠CAD,
∴∠CAD=∠ACE,
∴CG=AG,
设CG=x,则DG=8-x,
∵在中,,
∴x=5,
∴AG=5,
在中,EG=,EF⊥AD,∠AEG=90°,
∴,
∵在中,,、
∴DF=8-=,
∴在中,,
故答案是:.
【点睛】
本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.
3、或或3
【分析】
过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:,
有三种情况:
①当AB=BP=3时,如图1,过B作BM⊥AC于M,
S△ABC=,
,
解得:,
∵AB=BP=3,BM⊥AC,
∴,
∴AP=AM+PM=,
∴△PAB的面积=;
②当AB=AP=3时,如图2,
∵BM=,
∴△PAB的面积S=;
③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,
∵四边形ABCD是矩形,NQ⊥AC,
∴PN∥BC,
∵AN=BN,
∴AP=CP,
∴,
∴△PAB的面积;
即△PAB的面积为或或3.
故答案为:或或3.
【点睛】
本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
4、5
【分析】
直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.
【详解】
解:在直角三角形中,两直角边长分别为6和8,
则斜边长==10,
∴斜边中线长为×10=5,
故答案为 5.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.
5、(-1,-2)
【分析】
平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).据此作答.
【详解】
解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).
故答案为:(-1,-2).
【点睛】
本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.
三、解答题
1、∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°.
【分析】
探索一:根据三角形的内角和定理,结合对顶角的性质可求解;
探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;
探索三:运用探索一和探索二的结论即可求得答案;
应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;
应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;
拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案;
拓展二:运用探索一的结论及角平分线定义即可求得答案.
【详解】
解:探索一:如图1,
∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,
∴∠A+∠B=∠C+∠D,
故答案为∠A+∠B=∠C+∠D;
探索二:如图2,
∵AP、CP分别平分∠BAD、∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,
∴∠B﹣∠P=∠P﹣∠D,
即2∠P=∠B+∠D,
∵∠B=36°,∠D=14°,
∴∠P=25°,
故答案为25°;
探索三:由①∠D+2∠1=∠B+2∠3,
由②2∠B+2∠3=2∠P+2∠1,
①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1
∠D+2∠B=2∠P+∠B.
∴∠P=.
故答案为:∠P=.
应用一:如图4,
延长BM、CN,交于点A,
∵∠M=α,∠N=β,α+β>180°,
∴∠AMN=180°﹣α,∠ANM=180°﹣β,
∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;
∵BP、CP分别平分∠ABC、∠ACB,
∴∠PBC=∠ABC,∠PCD=∠ACD,
∵∠PCD=∠P+∠PBC,
∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,
故答案为:α+β﹣180°,;
应用二:如图5,
延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,
∵∠M=α,∠N=β,α+β<180°,
∴∠A=180°﹣α﹣β,
∵BP平分∠MBC,CP平分∠NCR,
∴BP平分∠ABT,CP平分∠ACB,
由应用一得:∠P=∠A=,
故答案为:;
拓展一:如图6,
由探索一可得:
∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,
∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,
∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,
∠PAB=∠CAB,∠PDB=∠CDB,
∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,
∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,
∴∠P=,
故答案为:∠P=;
拓展二:如图7,
∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,
∴∠PAD=∠BAD,∠PCD=90°+∠BCD,
由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,
②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,
③﹣①,得:2∠P﹣∠B=∠D+180°,
∴2∠P﹣∠B﹣∠D=180°,
故答案为:2∠P﹣∠B﹣∠D=180°.
【点睛】
本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.
2、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
【分析】
(1)过点D作DE⊥y轴于E,PF⊥y轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点D(n,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y=2x+6上,求出n=4即可;
(2)直线y=2x+b过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可
【详解】
解:(1)过点D作DE⊥y轴于E,PF⊥y轴于F,
设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,
∴x=n,y=2n+6,
∴点D(n,2n+6),
∵△APD是等腰直角三角形,
∴DA=AP,∠DAP=90°,
∴∠DAE+∠FAP=180°-∠DAP=90°,
∵DE⊥y轴,PF⊥y轴,
∴∠DEA=∠AFP=90°,
∴∠EDA+∠DAE=90°,
∴∠EDA=∠FAP,
在△EDA和△FAP中,
,
∴△EDA≌△FAP(AAS),
∴AE=PF,ED=FA,
∵四边形OABC为矩形,B的坐标为(8,6),
∴AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,
∵∠AFP=90°,
∴四边形AFPB为矩形,
∴PF=AB=8,
∴EA=FP=8,
∴OE=OA+AE=6+8=14,
∴点D(n,14),
∵点D在直线y=2x+6上,
∴14=2n+6,,
∴n=4,
∴点D(4,14);
(2)直线y=2x+b过点(3,0),
∴0=6+b,
∴b =-6,
∴直线y=2x-6,
设点D(x, 2x-6),
过点D作EF⊥y轴,交y轴于E,交CB延长线于F,
要使△ADP为等腰直角三角形,
当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,
∴∠ADE+∠FDP=180°-∠ADP=90°,
∵DE⊥y轴,PF⊥y轴,
∴∠DEA=∠AFP=90°,
∴∠EDA+∠DAE=90°,
∴∠EAD=∠FDP,
在△EDA和△FPD中,
,
∴△EDA≌△FPD(AAS),
∴AE=DF=2x-6-8=2x-14,ED=FP=x,
∵四边形OABC为矩形,AB=OC=8,OA=BC=6,
∴∠OCF=90°,
∴四边形OCFE为矩形,EF=OC=8,
∴DE+DF=x+2x-14=8,
解得x=,
∴,
∴点D;
当∠APD=90°,AP=DP,△ADP为等腰直角三角形,
∴∠APB+∠DPF=90°,
过D作DF⊥射线CB于F,
∴∠DFP=90°,
∵四边形OABC为矩形,
∴AB=OC=8,OA=CB=6,∠ABP=90°,
∴∠BAP+∠APB=90°,
∴∠BAP=∠FPD,
在△ABP和△PFD中,
,
∴△ABP≌△PFD(AAS),
∴BP=FD=x-8,AB=PF=8,
∴CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,
解得x=,
∴,
∴点D;
当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,
∴∠EAD +∠PAF=90°,
过D作DE⊥y轴于E,过P作PF⊥y轴于F,
∴∠DEA=∠PFA=90°,
∴∠FAP+∠FPA=90°,
∴∠FPA=∠EAD,
∵四边形OABC为矩形,
∴AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,
∵∠PFA=90°,
∴四边形AFPB为矩形,
∴PF=AB=8,
在△APF和△DAE中,
,
∴△APF≌△DAE(AAS),
∴FP=AE=8,AF=DE=6-m,
∴OE=OA+AE=6+8=14,
∴,
解得:,
∵PC=m≥0,
∴AF=6-m≤6<10,
∴此种情况不成立;
综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
【点睛】
本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.
3、(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s.
【分析】
(1)①由勾股定理可求解;
②由直角三角形的性质可求解;
(2)分两种情况讨论,由QM的长度为10,列出方程可求解;
(3)分两种情况讨论,由面积公式可求解;
(4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.
【详解】
解:(1)①∵∠ACB=90°,∠B=30°,AB=20,
∴AC==10,
∴BC=;
②∵PQ⊥AB,
∴∠BQP=90°,
∵∠B=30°,
∴PQ=,
由题意得:BP=2t,
∴PQ=t,
故答案为:t;
(2)在Rt△PQB中,
BQ==3t,
当点M与点Q相遇,20=AM+BQ=4t+3t,
∴t=,
当0<t<时,MQ=AB-AM-BQ,
∴20-4t-3t=10,
∴t=,
当<t≤=5时,MQ=AM+BQ-AB,
∴4t+3t-20=10,
∴t=,
综上所述:当QM的长度为10时,t的值为或;
(3)当0<t<时,S=PQ·MQ=t×(20-7t)=-t2+20t;
当<t≤5时,如图,
∵四边形PQMN是矩形,
∴PN=QM=7t-20,PQ=t,
∴∠B=30°,
∴ME∶BE∶BM=1∶2∶,
∵BM=20-4t,
∴ME=,
∴S==;
(4)如图,若NQ⊥AC,
∴NQ∥BC,
∴∠B=∠MQN=30°,
∵MN∶NQ∶MQ=1∶2∶,
∵MQ=20-7t,MN=PQ=,
∴,
∴t=2,
如图,若NQ⊥BC,
∴NQ∥AC,
∴∠A=∠BQN=90°-∠B=60°,
∴∠PQN=90°-∠BQN=30°,
∴PN∶NQ∶PQ=1∶2∶,
∵PN=MQ=7t-20,PQ=,
∴,
∴t=,
综上所述:当t=2s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.
【点睛】
本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.
4、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或
【分析】
(1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;
(2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;
(3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.
【详解】
(1)
如图1,∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
∵D为BC中点,
∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,
∴∠ADB=∠ADF+∠BDF=90°,
∵∠EDF=∠ADE+∠ADF=90°,
∴∠BDF=∠ADE,
∵BD=AD,∠B=∠CAD=45°,
∴△BDF≌△ADE(ASA),
∴BF=AE,
∴AB=AF+BF=AF+AE;
故答案为:AB=AF+AE;
(2)
AE+AF=AB.理由是:
如图2,取AB中点G,连接DG,
∵点G是斜边中点,
∴DG=AG=BG=AB,
∵AB=AC,∠BAC=120°,点D为BC的中点,
∴∠BAD=∠CAD=60°,
∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,
又∵∠FAD+∠ADE=∠FDE=60°,
∴∠GDF=∠ADE,
∵DG=AG,∠BAD=60°,
∴△ADG为等边三角形,
∴∠AGD=∠CAD=60°,GD=AD,
∴△GDF≌△ADE(ASA),
∴GF=AE,
∴AG=AB=AF+FG=AE+AF,
∴AE+AF=AB;
(3)
当点E在线段AC上时,如图3,取AC的中点H,连接DH,
当AB=AC=5,CE=1,∠EDF=60°时,
AE=4,此时F在BA的延长线上,
同(2)可得:△ADF≌△HDE (ASA),
∴AF=HE,
∵AH=CH=AC=,CE=1,
∴,
当点E在AC延长线上时,如图4,
同理可得:;
综上:AF的长为或.
【点睛】
本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键
5、见详解
【分析】
由题意易得AB=CD,AB∥CD,AE=CF,则有∠BAE=∠DCF,进而问题可求证.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
∵E,F是对角线AC的三等分点,
∴AE=CF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴BE=DF.
【点睛】
本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.
相关试卷
这是一份数学北京课改版第十五章 四边形综合与测试当堂达标检测题,共28页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共34页。
这是一份数学八年级下册第十五章 四边形综合与测试当堂检测题,共36页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)